ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xnn0 Unicode version

Theorem 0xnn0 9312
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0  |-  0  e. NN0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 9309 . 2  |-  NN0  C_ NN0*
2 0nn0 9258 . 2  |-  0  e.  NN0
31, 2sselii 3177 1  |-  0  e. NN0*
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   0cc0 7874   NN0cn0 9243  NN0*cxnn0 9306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-i2m1 7979
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-n0 9244  df-xnn0 9307
This theorem is referenced by:  0tonninf  10514
  Copyright terms: Public domain W3C validator