ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xnn0 Unicode version

Theorem 0xnn0 9204
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0  |-  0  e. NN0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 9201 . 2  |-  NN0  C_ NN0*
2 0nn0 9150 . 2  |-  0  e.  NN0
31, 2sselii 3144 1  |-  0  e. NN0*
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   0cc0 7774   NN0cn0 9135  NN0*cxnn0 9198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-1cn 7867  ax-icn 7869  ax-addcl 7870  ax-mulcl 7872  ax-i2m1 7879
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-n0 9136  df-xnn0 9199
This theorem is referenced by:  0tonninf  10395
  Copyright terms: Public domain W3C validator