ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0xnn0 Unicode version

Theorem 0xnn0 9259
Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
0xnn0  |-  0  e. NN0*

Proof of Theorem 0xnn0
StepHypRef Expression
1 nn0ssxnn0 9256 . 2  |-  NN0  C_ NN0*
2 0nn0 9205 . 2  |-  0  e.  NN0
31, 2sselii 3164 1  |-  0  e. NN0*
Colors of variables: wff set class
Syntax hints:    e. wcel 2158   0cc0 7825   NN0cn0 9190  NN0*cxnn0 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-1cn 7918  ax-icn 7920  ax-addcl 7921  ax-mulcl 7923  ax-i2m1 7930
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-n0 9191  df-xnn0 9254
This theorem is referenced by:  0tonninf  10453
  Copyright terms: Public domain W3C validator