| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0xnn0 | Unicode version | ||
| Description: Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| 0xnn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ssxnn0 9361 |
. 2
| |
| 2 | 0nn0 9310 |
. 2
| |
| 3 | 1, 2 | sselii 3190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-i2m1 8030 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-n0 9296 df-xnn0 9359 |
| This theorem is referenced by: 0tonninf 10585 |
| Copyright terms: Public domain | W3C validator |