| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | Unicode version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 717 |
. . 3
| |
| 2 | elun 3345 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | 3 | ssriv 3228 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssun2 3368 ssun3 3369 elun1 3371 inabs 3436 reuun1 3486 un00 3538 undifabs 3568 undifss 3572 snsspr1 3816 snsstp1 3818 snsstp2 3819 prsstp12 3821 exmidundif 4290 sssucid 4506 unexb 4533 dmexg 4988 fvun1 5700 dftpos2 6407 tpostpos2 6411 ac6sfi 7060 caserel 7254 finomni 7307 ressxr 8190 nnssnn0 9372 un0addcl 9402 un0mulcl 9403 nn0ssxnn0 9435 ccatclab 11129 ccatrn 11144 fsumsplit 11918 fsum2d 11946 fsumabs 11976 fprodsplitdc 12107 fprod2d 12134 ennnfonelemss 12981 prdssca 13308 prdsbas 13309 prdsplusg 13310 prdsmulr 13311 lspun 14366 cnfldbas 14524 mpocnfldadd 14525 mpocnfldmul 14527 cnfldcj 14529 cnfldtset 14530 cnfldle 14531 cnfldds 14532 psrplusgg 14642 dvmptfsum 15399 elplyr 15414 lgsdir2lem3 15709 lgsquadlem2 15757 bdunexb 16283 |
| Copyright terms: Public domain | W3C validator |