ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 Unicode version

Theorem ssun1 3336
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1  |-  A  C_  ( A  u.  B
)

Proof of Theorem ssun1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orc 714 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
2 elun 3314 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
31, 2sylibr 134 . 2  |-  ( x  e.  A  ->  x  e.  ( A  u.  B
) )
43ssriv 3197 1  |-  A  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 710    e. wcel 2176    u. cun 3164    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by:  ssun2  3337  ssun3  3338  elun1  3340  inabs  3405  reuun1  3455  un00  3507  undifabs  3537  undifss  3541  snsspr1  3781  snsstp1  3783  snsstp2  3784  prsstp12  3786  exmidundif  4250  sssucid  4462  unexb  4489  dmexg  4942  fvun1  5645  dftpos2  6347  tpostpos2  6351  ac6sfi  6995  caserel  7189  finomni  7242  ressxr  8116  nnssnn0  9298  un0addcl  9328  un0mulcl  9329  nn0ssxnn0  9361  ccatclab  11050  ccatrn  11065  fsumsplit  11718  fsum2d  11746  fsumabs  11776  fprodsplitdc  11907  fprod2d  11934  ennnfonelemss  12781  prdssca  13107  prdsbas  13108  prdsplusg  13109  prdsmulr  13110  lspun  14164  cnfldbas  14322  mpocnfldadd  14323  mpocnfldmul  14325  cnfldcj  14327  cnfldtset  14328  cnfldle  14329  cnfldds  14330  psrplusgg  14440  dvmptfsum  15197  elplyr  15212  lgsdir2lem3  15507  lgsquadlem2  15555  bdunexb  15856
  Copyright terms: Public domain W3C validator