ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 Unicode version

Theorem ssun1 3271
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1  |-  A  C_  ( A  u.  B
)

Proof of Theorem ssun1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orc 702 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
2 elun 3249 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
31, 2sylibr 133 . 2  |-  ( x  e.  A  ->  x  e.  ( A  u.  B
) )
43ssriv 3132 1  |-  A  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 698    e. wcel 2128    u. cun 3100    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115
This theorem is referenced by:  ssun2  3272  ssun3  3273  elun1  3275  inabs  3340  reuun1  3390  un00  3441  undifabs  3471  undifss  3475  snsspr1  3706  snsstp1  3708  snsstp2  3709  prsstp12  3711  exmidundif  4169  sssucid  4377  unexb  4404  dmexg  4852  fvun1  5536  dftpos2  6210  tpostpos2  6214  ac6sfi  6845  caserel  7033  finomni  7085  ressxr  7923  nnssnn0  9098  un0addcl  9128  un0mulcl  9129  nn0ssxnn0  9161  fsumsplit  11315  fsum2d  11343  fsumabs  11373  fprodsplitdc  11504  fprod2d  11531  ennnfonelemss  12209  bdunexb  13566
  Copyright terms: Public domain W3C validator