| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | Unicode version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 714 |
. . 3
| |
| 2 | elun 3322 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | 3 | ssriv 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssun2 3345 ssun3 3346 elun1 3348 inabs 3413 reuun1 3463 un00 3515 undifabs 3545 undifss 3549 snsspr1 3792 snsstp1 3794 snsstp2 3795 prsstp12 3797 exmidundif 4266 sssucid 4480 unexb 4507 dmexg 4961 fvun1 5668 dftpos2 6370 tpostpos2 6374 ac6sfi 7021 caserel 7215 finomni 7268 ressxr 8151 nnssnn0 9333 un0addcl 9363 un0mulcl 9364 nn0ssxnn0 9396 ccatclab 11088 ccatrn 11103 fsumsplit 11833 fsum2d 11861 fsumabs 11891 fprodsplitdc 12022 fprod2d 12049 ennnfonelemss 12896 prdssca 13222 prdsbas 13223 prdsplusg 13224 prdsmulr 13225 lspun 14279 cnfldbas 14437 mpocnfldadd 14438 mpocnfldmul 14440 cnfldcj 14442 cnfldtset 14443 cnfldle 14444 cnfldds 14445 psrplusgg 14555 dvmptfsum 15312 elplyr 15327 lgsdir2lem3 15622 lgsquadlem2 15670 bdunexb 16055 |
| Copyright terms: Public domain | W3C validator |