ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 Unicode version

Theorem ssun1 3300
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1  |-  A  C_  ( A  u.  B
)

Proof of Theorem ssun1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orc 712 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
2 elun 3278 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
31, 2sylibr 134 . 2  |-  ( x  e.  A  ->  x  e.  ( A  u.  B
) )
43ssriv 3161 1  |-  A  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 708    e. wcel 2148    u. cun 3129    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144
This theorem is referenced by:  ssun2  3301  ssun3  3302  elun1  3304  inabs  3369  reuun1  3419  un00  3471  undifabs  3501  undifss  3505  snsspr1  3742  snsstp1  3744  snsstp2  3745  prsstp12  3747  exmidundif  4208  sssucid  4417  unexb  4444  dmexg  4893  fvun1  5585  dftpos2  6265  tpostpos2  6269  ac6sfi  6901  caserel  7089  finomni  7141  ressxr  8004  nnssnn0  9182  un0addcl  9212  un0mulcl  9213  nn0ssxnn0  9245  fsumsplit  11418  fsum2d  11446  fsumabs  11476  fprodsplitdc  11607  fprod2d  11634  ennnfonelemss  12414  lspun  13527  cnfldbas  13633  cnfldadd  13634  cnfldmul  13635  lgsdir2lem3  14619  bdunexb  14860
  Copyright terms: Public domain W3C validator