| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | Unicode version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 714 |
. . 3
| |
| 2 | elun 3314 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | 3 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssun2 3337 ssun3 3338 elun1 3340 inabs 3405 reuun1 3455 un00 3507 undifabs 3537 undifss 3541 snsspr1 3781 snsstp1 3783 snsstp2 3784 prsstp12 3786 exmidundif 4250 sssucid 4462 unexb 4489 dmexg 4942 fvun1 5645 dftpos2 6347 tpostpos2 6351 ac6sfi 6995 caserel 7189 finomni 7242 ressxr 8116 nnssnn0 9298 un0addcl 9328 un0mulcl 9329 nn0ssxnn0 9361 ccatclab 11050 ccatrn 11065 fsumsplit 11718 fsum2d 11746 fsumabs 11776 fprodsplitdc 11907 fprod2d 11934 ennnfonelemss 12781 prdssca 13107 prdsbas 13108 prdsplusg 13109 prdsmulr 13110 lspun 14164 cnfldbas 14322 mpocnfldadd 14323 mpocnfldmul 14325 cnfldcj 14327 cnfldtset 14328 cnfldle 14329 cnfldds 14330 psrplusgg 14440 dvmptfsum 15197 elplyr 15212 lgsdir2lem3 15507 lgsquadlem2 15555 bdunexb 15856 |
| Copyright terms: Public domain | W3C validator |