ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 Unicode version

Theorem ssun1 3344
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1  |-  A  C_  ( A  u.  B
)

Proof of Theorem ssun1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orc 714 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
2 elun 3322 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
31, 2sylibr 134 . 2  |-  ( x  e.  A  ->  x  e.  ( A  u.  B
) )
43ssriv 3205 1  |-  A  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 710    e. wcel 2178    u. cun 3172    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by:  ssun2  3345  ssun3  3346  elun1  3348  inabs  3413  reuun1  3463  un00  3515  undifabs  3545  undifss  3549  snsspr1  3792  snsstp1  3794  snsstp2  3795  prsstp12  3797  exmidundif  4266  sssucid  4480  unexb  4507  dmexg  4961  fvun1  5668  dftpos2  6370  tpostpos2  6374  ac6sfi  7021  caserel  7215  finomni  7268  ressxr  8151  nnssnn0  9333  un0addcl  9363  un0mulcl  9364  nn0ssxnn0  9396  ccatclab  11088  ccatrn  11103  fsumsplit  11833  fsum2d  11861  fsumabs  11891  fprodsplitdc  12022  fprod2d  12049  ennnfonelemss  12896  prdssca  13222  prdsbas  13223  prdsplusg  13224  prdsmulr  13225  lspun  14279  cnfldbas  14437  mpocnfldadd  14438  mpocnfldmul  14440  cnfldcj  14442  cnfldtset  14443  cnfldle  14444  cnfldds  14445  psrplusgg  14555  dvmptfsum  15312  elplyr  15327  lgsdir2lem3  15622  lgsquadlem2  15670  bdunexb  16055
  Copyright terms: Public domain W3C validator