| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ssun1 | Unicode version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| ssun1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orc 713 | 
. . 3
 | |
| 2 | elun 3304 | 
. . 3
 | |
| 3 | 1, 2 | sylibr 134 | 
. 2
 | 
| 4 | 3 | ssriv 3187 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: ssun2 3327 ssun3 3328 elun1 3330 inabs 3395 reuun1 3445 un00 3497 undifabs 3527 undifss 3531 snsspr1 3770 snsstp1 3772 snsstp2 3773 prsstp12 3775 exmidundif 4239 sssucid 4450 unexb 4477 dmexg 4930 fvun1 5627 dftpos2 6319 tpostpos2 6323 ac6sfi 6959 caserel 7153 finomni 7206 ressxr 8070 nnssnn0 9252 un0addcl 9282 un0mulcl 9283 nn0ssxnn0 9315 fsumsplit 11572 fsum2d 11600 fsumabs 11630 fprodsplitdc 11761 fprod2d 11788 ennnfonelemss 12627 lspun 13958 cnfldbas 14116 mpocnfldadd 14117 mpocnfldmul 14119 cnfldcj 14121 cnfldtset 14122 cnfldle 14123 cnfldds 14124 psrplusgg 14230 dvmptfsum 14961 elplyr 14976 lgsdir2lem3 15271 lgsquadlem2 15319 bdunexb 15566 | 
| Copyright terms: Public domain | W3C validator |