| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssun1 | Unicode version | ||
| Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ssun1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 714 |
. . 3
| |
| 2 | elun 3314 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | 3 | ssriv 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssun2 3337 ssun3 3338 elun1 3340 inabs 3405 reuun1 3455 un00 3507 undifabs 3537 undifss 3541 snsspr1 3781 snsstp1 3783 snsstp2 3784 prsstp12 3786 exmidundif 4251 sssucid 4463 unexb 4490 dmexg 4943 fvun1 5647 dftpos2 6349 tpostpos2 6353 ac6sfi 6997 caserel 7191 finomni 7244 ressxr 8118 nnssnn0 9300 un0addcl 9330 un0mulcl 9331 nn0ssxnn0 9363 ccatclab 11053 ccatrn 11068 fsumsplit 11751 fsum2d 11779 fsumabs 11809 fprodsplitdc 11940 fprod2d 11967 ennnfonelemss 12814 prdssca 13140 prdsbas 13141 prdsplusg 13142 prdsmulr 13143 lspun 14197 cnfldbas 14355 mpocnfldadd 14356 mpocnfldmul 14358 cnfldcj 14360 cnfldtset 14361 cnfldle 14362 cnfldds 14363 psrplusgg 14473 dvmptfsum 15230 elplyr 15245 lgsdir2lem3 15540 lgsquadlem2 15588 bdunexb 15893 |
| Copyright terms: Public domain | W3C validator |