ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun1 Unicode version

Theorem ssun1 3290
Description: Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
ssun1  |-  A  C_  ( A  u.  B
)

Proof of Theorem ssun1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orc 707 . . 3  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
2 elun 3268 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
31, 2sylibr 133 . 2  |-  ( x  e.  A  ->  x  e.  ( A  u.  B
) )
43ssriv 3151 1  |-  A  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \/ wo 703    e. wcel 2141    u. cun 3119    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  ssun2  3291  ssun3  3292  elun1  3294  inabs  3359  reuun1  3409  un00  3461  undifabs  3491  undifss  3495  snsspr1  3728  snsstp1  3730  snsstp2  3731  prsstp12  3733  exmidundif  4192  sssucid  4400  unexb  4427  dmexg  4875  fvun1  5562  dftpos2  6240  tpostpos2  6244  ac6sfi  6876  caserel  7064  finomni  7116  ressxr  7963  nnssnn0  9138  un0addcl  9168  un0mulcl  9169  nn0ssxnn0  9201  fsumsplit  11370  fsum2d  11398  fsumabs  11428  fprodsplitdc  11559  fprod2d  11586  ennnfonelemss  12365  lgsdir2lem3  13725  bdunexb  13955
  Copyright terms: Public domain W3C validator