ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotsnex Unicode version

Theorem notnotsnex 4216
Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
Assertion
Ref Expression
notnotsnex  |-  -.  -.  { A }  e.  _V

Proof of Theorem notnotsnex
StepHypRef Expression
1 snexg 4213 . . . . 5  |-  ( A  e.  _V  ->  { A }  e.  _V )
21con3i 633 . . . 4  |-  ( -. 
{ A }  e.  _V  ->  -.  A  e.  _V )
3 snexprc 4215 . . . 4  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )
42, 3syl 14 . . 3  |-  ( -. 
{ A }  e.  _V  ->  { A }  e.  _V )
54con3i 633 . 2  |-  ( -. 
{ A }  e.  _V  ->  -.  -.  { A }  e.  _V )
6 pm2.01 617 . 2  |-  ( ( -.  { A }  e.  _V  ->  -.  -.  { A }  e.  _V )  ->  -.  -.  { A }  e.  _V )
75, 6ax-mp 5 1  |-  -.  -.  { A }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2164   _Vcvv 2760   {csn 3618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator