ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotsnex GIF version

Theorem notnotsnex 4271
Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
Assertion
Ref Expression
notnotsnex ¬ ¬ {𝐴} ∈ V

Proof of Theorem notnotsnex
StepHypRef Expression
1 snexg 4268 . . . . 5 (𝐴 ∈ V → {𝐴} ∈ V)
21con3i 635 . . . 4 (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V)
3 snexprc 4270 . . . 4 𝐴 ∈ V → {𝐴} ∈ V)
42, 3syl 14 . . 3 (¬ {𝐴} ∈ V → {𝐴} ∈ V)
54con3i 635 . 2 (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V)
6 pm2.01 619 . 2 ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V)
75, 6ax-mp 5 1 ¬ ¬ {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2200  Vcvv 2799  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator