ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotsnex GIF version

Theorem notnotsnex 4247
Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
Assertion
Ref Expression
notnotsnex ¬ ¬ {𝐴} ∈ V

Proof of Theorem notnotsnex
StepHypRef Expression
1 snexg 4244 . . . . 5 (𝐴 ∈ V → {𝐴} ∈ V)
21con3i 633 . . . 4 (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V)
3 snexprc 4246 . . . 4 𝐴 ∈ V → {𝐴} ∈ V)
42, 3syl 14 . . 3 (¬ {𝐴} ∈ V → {𝐴} ∈ V)
54con3i 633 . 2 (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V)
6 pm2.01 617 . 2 ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V)
75, 6ax-mp 5 1 ¬ ¬ {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2178  Vcvv 2776  {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator