| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnotsnex | GIF version | ||
| Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| notnotsnex | ⊢ ¬ ¬ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4268 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | 1 | con3i 635 | . . . 4 ⊢ (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V) |
| 3 | snexprc 4270 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (¬ {𝐴} ∈ V → {𝐴} ∈ V) |
| 5 | 4 | con3i 635 | . 2 ⊢ (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) |
| 6 | pm2.01 619 | . 2 ⊢ ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ¬ ¬ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2200 Vcvv 2799 {csn 3666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |