ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotsnex GIF version

Theorem notnotsnex 4166
Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
Assertion
Ref Expression
notnotsnex ¬ ¬ {𝐴} ∈ V

Proof of Theorem notnotsnex
StepHypRef Expression
1 snexg 4163 . . . . 5 (𝐴 ∈ V → {𝐴} ∈ V)
21con3i 622 . . . 4 (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V)
3 snexprc 4165 . . . 4 𝐴 ∈ V → {𝐴} ∈ V)
42, 3syl 14 . . 3 (¬ {𝐴} ∈ V → {𝐴} ∈ V)
54con3i 622 . 2 (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V)
6 pm2.01 606 . 2 ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V)
75, 6ax-mp 5 1 ¬ ¬ {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2136  Vcvv 2726  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator