Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > notnotsnex | GIF version |
Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.) |
Ref | Expression |
---|---|
notnotsnex | ⊢ ¬ ¬ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snexg 4170 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
2 | 1 | con3i 627 | . . . 4 ⊢ (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V) |
3 | snexprc 4172 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ (¬ {𝐴} ∈ V → {𝐴} ∈ V) |
5 | 4 | con3i 627 | . 2 ⊢ (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) |
6 | pm2.01 611 | . 2 ⊢ ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ¬ ¬ {𝐴} ∈ V |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2141 Vcvv 2730 {csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |