| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnotsnex | GIF version | ||
| Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.) |
| Ref | Expression |
|---|---|
| notnotsnex | ⊢ ¬ ¬ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snexg 4218 | . . . . 5 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
| 2 | 1 | con3i 633 | . . . 4 ⊢ (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V) |
| 3 | snexprc 4220 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (¬ {𝐴} ∈ V → {𝐴} ∈ V) |
| 5 | 4 | con3i 633 | . 2 ⊢ (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) |
| 6 | pm2.01 617 | . 2 ⊢ ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ¬ ¬ {𝐴} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2167 Vcvv 2763 {csn 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |