ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notnotsnex GIF version

Theorem notnotsnex 4173
Description: A singleton is never a proper class. (Contributed by Mario Carneiro and Jim Kingdon, 3-Jul-2022.)
Assertion
Ref Expression
notnotsnex ¬ ¬ {𝐴} ∈ V

Proof of Theorem notnotsnex
StepHypRef Expression
1 snexg 4170 . . . . 5 (𝐴 ∈ V → {𝐴} ∈ V)
21con3i 627 . . . 4 (¬ {𝐴} ∈ V → ¬ 𝐴 ∈ V)
3 snexprc 4172 . . . 4 𝐴 ∈ V → {𝐴} ∈ V)
42, 3syl 14 . . 3 (¬ {𝐴} ∈ V → {𝐴} ∈ V)
54con3i 627 . 2 (¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V)
6 pm2.01 611 . 2 ((¬ {𝐴} ∈ V → ¬ ¬ {𝐴} ∈ V) → ¬ ¬ {𝐴} ∈ V)
75, 6ax-mp 5 1 ¬ ¬ {𝐴} ∈ V
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2141  Vcvv 2730  {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator