| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > snexg | Unicode version | ||
| Description: A singleton whose element
exists is a set. The |
| Ref | Expression |
|---|---|
| snexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwexg 4264 |
. 2
| |
| 2 | snsspw 3842 |
. . 3
| |
| 3 | ssexg 4223 |
. . 3
| |
| 4 | 2, 3 | mpan 424 |
. 2
|
| 5 | 1, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: snex 4269 notnotsnex 4271 exmidsssnc 4287 snelpwg 4296 snelpwi 4297 opexg 4314 opm 4320 tpexg 4535 op1stbg 4570 sucexb 4589 elxp4 5216 elxp5 5217 opabex3d 6266 opabex3 6267 1stvalg 6288 2ndvalg 6289 mpoexxg 6356 cnvf1o 6371 brtpos2 6397 tfr0dm 6468 tfrlemisucaccv 6471 tfrlemibxssdm 6473 tfrlemibfn 6474 tfr1onlemsucaccv 6487 tfr1onlembxssdm 6489 tfr1onlembfn 6490 tfrcllemsucaccv 6500 tfrcllembxssdm 6502 tfrcllembfn 6503 fvdiagfn 6840 ixpsnf1o 6883 mapsnf1o 6884 xpsnen2g 6988 zfz1isolem1 11062 climconst2 11802 ennnfonelemp1 12977 setsvalg 13062 setsex 13064 setsslid 13083 strle1g 13139 1strbas 13150 pwsval 13324 pwsbas 13325 pwssnf1o 13331 imasex 13338 imasival 13339 imasbas 13340 imasplusg 13341 imasmulr 13342 mgm1 13403 igsumvalx 13422 sgrp1 13444 mnd1 13488 mnd1id 13489 grp1 13639 grp1inv 13640 mulgnngsum 13664 triv1nsgd 13755 ring1 14022 znval 14600 znle 14601 znbaslemnn 14603 znbas 14608 znzrhval 14611 znzrhfo 14612 psrval 14630 psrbasg 14638 psrplusgg 14642 upgr1eopdc 15923 |
| Copyright terms: Public domain | W3C validator |