![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snexg | Unicode version |
Description: A singleton whose element
exists is a set. The ![]() ![]() ![]() |
Ref | Expression |
---|---|
snexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | snsspw 3778 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ssexg 4156 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpan 424 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2162 ax-ext 2170 ax-sep 4135 ax-pow 4188 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-in 3149 df-ss 3156 df-pw 3591 df-sn 3612 |
This theorem is referenced by: snex 4199 notnotsnex 4201 exmidsssnc 4217 snelpwi 4226 opexg 4242 opm 4248 tpexg 4458 op1stbg 4493 sucexb 4510 elxp4 5130 elxp5 5131 opabex3d 6139 opabex3 6140 1stvalg 6160 2ndvalg 6161 mpoexxg 6228 cnvf1o 6243 brtpos2 6269 tfr0dm 6340 tfrlemisucaccv 6343 tfrlemibxssdm 6345 tfrlemibfn 6346 tfr1onlemsucaccv 6359 tfr1onlembxssdm 6361 tfr1onlembfn 6362 tfrcllemsucaccv 6372 tfrcllembxssdm 6374 tfrcllembfn 6375 fvdiagfn 6710 ixpsnf1o 6753 mapsnf1o 6754 xpsnen2g 6846 zfz1isolem1 10837 climconst2 11316 ennnfonelemp1 12424 setsvalg 12509 setsex 12511 setsslid 12530 strle1g 12583 1strbas 12594 imasex 12747 imasival 12748 imasbas 12749 imasplusg 12750 imasmulr 12751 mgm1 12811 sgrp1 12839 mnd1 12872 mnd1id 12873 grp1 13015 grp1inv 13016 triv1nsgd 13122 ring1 13371 |
Copyright terms: Public domain | W3C validator |