![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > snexg | Unicode version |
Description: A singleton whose element
exists is a set. The ![]() ![]() ![]() |
Ref | Expression |
---|---|
snexg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexg 4182 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | snsspw 3766 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ssexg 4144 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpan 424 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 |
This theorem is referenced by: snex 4187 notnotsnex 4189 exmidsssnc 4205 snelpwi 4214 opexg 4230 opm 4236 tpexg 4446 op1stbg 4481 sucexb 4498 elxp4 5118 elxp5 5119 opabex3d 6124 opabex3 6125 1stvalg 6145 2ndvalg 6146 mpoexxg 6213 cnvf1o 6228 brtpos2 6254 tfr0dm 6325 tfrlemisucaccv 6328 tfrlemibxssdm 6330 tfrlemibfn 6331 tfr1onlemsucaccv 6344 tfr1onlembxssdm 6346 tfr1onlembfn 6347 tfrcllemsucaccv 6357 tfrcllembxssdm 6359 tfrcllembfn 6360 fvdiagfn 6695 ixpsnf1o 6738 mapsnf1o 6739 xpsnen2g 6831 zfz1isolem1 10822 climconst2 11301 ennnfonelemp1 12409 setsvalg 12494 setsex 12496 setsslid 12515 strle1g 12567 1strbas 12578 imasex 12731 imasival 12732 imasbas 12733 imasplusg 12734 imasmulr 12735 mgm1 12794 sgrp1 12821 mnd1 12852 mnd1id 12853 grp1 12981 grp1inv 12982 triv1nsgd 13083 ring1 13241 |
Copyright terms: Public domain | W3C validator |