| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > snexg | Unicode version | ||
| Description: A singleton whose element
exists is a set.  The  | 
| Ref | Expression | 
|---|---|
| snexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pwexg 4213 | 
. 2
 | |
| 2 | snsspw 3794 | 
. . 3
 | |
| 3 | ssexg 4172 | 
. . 3
 | |
| 4 | 2, 3 | mpan 424 | 
. 2
 | 
| 5 | 1, 4 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 | 
| This theorem is referenced by: snex 4218 notnotsnex 4220 exmidsssnc 4236 snelpwi 4245 opexg 4261 opm 4267 tpexg 4479 op1stbg 4514 sucexb 4533 elxp4 5157 elxp5 5158 opabex3d 6178 opabex3 6179 1stvalg 6200 2ndvalg 6201 mpoexxg 6268 cnvf1o 6283 brtpos2 6309 tfr0dm 6380 tfrlemisucaccv 6383 tfrlemibxssdm 6385 tfrlemibfn 6386 tfr1onlemsucaccv 6399 tfr1onlembxssdm 6401 tfr1onlembfn 6402 tfrcllemsucaccv 6412 tfrcllembxssdm 6414 tfrcllembfn 6415 fvdiagfn 6752 ixpsnf1o 6795 mapsnf1o 6796 xpsnen2g 6888 zfz1isolem1 10932 climconst2 11456 ennnfonelemp1 12623 setsvalg 12708 setsex 12710 setsslid 12729 strle1g 12784 1strbas 12795 imasex 12948 imasival 12949 imasbas 12950 imasplusg 12951 imasmulr 12952 mgm1 13013 igsumvalx 13032 sgrp1 13054 mnd1 13087 mnd1id 13088 grp1 13238 grp1inv 13239 mulgnngsum 13257 triv1nsgd 13348 ring1 13615 znval 14192 znle 14193 znbaslemnn 14195 znbas 14200 znzrhval 14203 znzrhfo 14204 psrval 14220 psrbasg 14227 psrplusgg 14230 | 
| Copyright terms: Public domain | W3C validator |