ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexprc Unicode version

Theorem snexprc 4050
Description: A singleton whose element is a proper class is a set. The 
-.  A  e.  _V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexprc  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )

Proof of Theorem snexprc
StepHypRef Expression
1 snprc 3535 . . 3  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
21biimpi 119 . 2  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
3 0ex 3995 . 2  |-  (/)  e.  _V
42, 3syl6eqel 2190 1  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1299    e. wcel 1448   _Vcvv 2641   (/)c0 3310   {csn 3474
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-nul 3994
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-dif 3023  df-nul 3311  df-sn 3480
This theorem is referenced by:  notnotsnex  4051
  Copyright terms: Public domain W3C validator