ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexprc Unicode version

Theorem snexprc 4216
Description: A singleton whose element is a proper class is a set. The 
-.  A  e.  _V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexprc  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )

Proof of Theorem snexprc
StepHypRef Expression
1 snprc 3684 . . 3  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
21biimpi 120 . 2  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
3 0ex 4157 . 2  |-  (/)  e.  _V
42, 3eqeltrdi 2284 1  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760   (/)c0 3447   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-nul 4156
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-nul 3448  df-sn 3625
This theorem is referenced by:  notnotsnex  4217
  Copyright terms: Public domain W3C validator