ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snexprc Unicode version

Theorem snexprc 4230
Description: A singleton whose element is a proper class is a set. The 
-.  A  e.  _V case of Theorem 7.12 of [Quine] p. 51, proved using only Extensionality, Power Set, and Separation. Replacement is not needed. (Contributed by Jim Kingdon, 1-Sep-2018.)
Assertion
Ref Expression
snexprc  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )

Proof of Theorem snexprc
StepHypRef Expression
1 snprc 3698 . . 3  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
21biimpi 120 . 2  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
3 0ex 4171 . 2  |-  (/)  e.  _V
42, 3eqeltrdi 2296 1  |-  ( -.  A  e.  _V  ->  { A }  e.  _V )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-nul 4170
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-nul 3461  df-sn 3639
This theorem is referenced by:  notnotsnex  4231
  Copyright terms: Public domain W3C validator