ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex Unicode version

Theorem p0ex 4222
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex  |-  { (/) }  e.  _V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3770 . 2  |-  ~P (/)  =  { (/)
}
2 0ex 4161 . . 3  |-  (/)  e.  _V
32pwex 4217 . 2  |-  ~P (/)  e.  _V
41, 3eqeltrri 2270 1  |-  { (/) }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2167   _Vcvv 2763   (/)c0 3451   ~Pcpw 3606   {csn 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629
This theorem is referenced by:  pp0ex  4223  undifexmid  4227  exmidexmid  4230  exmidundif  4240  exmidundifim  4241  exmid1stab  4242  ordtriexmidlem  4556  ontr2exmid  4562  onsucsssucexmid  4564  onsucelsucexmid  4567  regexmidlemm  4569  ordsoexmid  4599  ordtri2or2exmid  4608  ontri2orexmidim  4609  opthprc  4715  acexmidlema  5916  acexmidlem2  5922  tposexg  6325  2dom  6873  map1  6880  endisj  6892  ssfiexmid  6946  domfiexmid  6948  exmidpw  6978  exmidpw2en  6982  djuex  7118  exmidomni  7217  exmidonfinlem  7272  exmidfodomrlemr  7281  exmidfodomrlemrALT  7282  exmidaclem  7291  pw1dom2  7310  pw1ne1  7312  sbthom  15757
  Copyright terms: Public domain W3C validator