| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | Unicode version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3780 |
. 2
| |
| 2 | 0ex 4171 |
. . 3
| |
| 3 | 2 | pwex 4227 |
. 2
|
| 4 | 1, 3 | eqeltrri 2279 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 |
| This theorem is referenced by: pp0ex 4233 undifexmid 4237 exmidexmid 4240 exmidundif 4250 exmidundifim 4251 exmid1stab 4252 ordtriexmidlem 4567 ontr2exmid 4573 onsucsssucexmid 4575 onsucelsucexmid 4578 regexmidlemm 4580 ordsoexmid 4610 ordtri2or2exmid 4619 ontri2orexmidim 4620 opthprc 4726 acexmidlema 5935 acexmidlem2 5941 tposexg 6344 2dom 6897 map1 6904 endisj 6919 ssfiexmid 6973 domfiexmid 6975 exmidpw 7005 exmidpw2en 7009 djuex 7145 exmidomni 7244 exmidonfinlem 7301 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 exmidaclem 7320 pw1dom2 7339 pw1ne1 7341 sbthom 15965 |
| Copyright terms: Public domain | W3C validator |