ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex Unicode version

Theorem p0ex 4248
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex  |-  { (/) }  e.  _V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3791 . 2  |-  ~P (/)  =  { (/)
}
2 0ex 4187 . . 3  |-  (/)  e.  _V
32pwex 4243 . 2  |-  ~P (/)  e.  _V
41, 3eqeltrri 2281 1  |-  { (/) }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2178   _Vcvv 2776   (/)c0 3468   ~Pcpw 3626   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649
This theorem is referenced by:  pp0ex  4249  undifexmid  4253  exmidexmid  4256  exmidundif  4266  exmidundifim  4267  exmid1stab  4268  ordtriexmidlem  4585  ontr2exmid  4591  onsucsssucexmid  4593  onsucelsucexmid  4596  regexmidlemm  4598  ordsoexmid  4628  ordtri2or2exmid  4637  ontri2orexmidim  4638  opthprc  4744  acexmidlema  5958  acexmidlem2  5964  tposexg  6367  2dom  6921  map1  6928  endisj  6944  ssfiexmid  6999  domfiexmid  7001  exmidpw  7031  exmidpw2en  7035  djuex  7171  exmidomni  7270  exmidonfinlem  7332  exmidfodomrlemr  7341  exmidfodomrlemrALT  7342  exmidaclem  7351  pw1dom2  7373  pw1ne1  7375  sbthom  16167
  Copyright terms: Public domain W3C validator