ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex Unicode version

Theorem p0ex 4167
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex  |-  { (/) }  e.  _V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3720 . 2  |-  ~P (/)  =  { (/)
}
2 0ex 4109 . . 3  |-  (/)  e.  _V
32pwex 4162 . 2  |-  ~P (/)  e.  _V
41, 3eqeltrri 2240 1  |-  { (/) }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2136   _Vcvv 2726   (/)c0 3409   ~Pcpw 3559   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582
This theorem is referenced by:  pp0ex  4168  undifexmid  4172  exmidexmid  4175  exmidundif  4185  exmidundifim  4186  ordtriexmidlem  4496  ontr2exmid  4502  onsucsssucexmid  4504  onsucelsucexmid  4507  regexmidlemm  4509  ordsoexmid  4539  ordtri2or2exmid  4548  ontri2orexmidim  4549  opthprc  4655  acexmidlema  5833  acexmidlem2  5839  tposexg  6226  2dom  6771  map1  6778  endisj  6790  ssfiexmid  6842  domfiexmid  6844  exmidpw  6874  djuex  7008  exmidomni  7106  exmidonfinlem  7149  exmidfodomrlemr  7158  exmidfodomrlemrALT  7159  exmidaclem  7164  pw1dom2  7183  pw1ne1  7185  exmid1stab  13880  sbthom  13905
  Copyright terms: Public domain W3C validator