![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > p0ex | Unicode version |
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 3766 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0ex 4157 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | pwex 4213 |
. 2
![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqeltrri 2267 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 |
This theorem is referenced by: pp0ex 4219 undifexmid 4223 exmidexmid 4226 exmidundif 4236 exmidundifim 4237 exmid1stab 4238 ordtriexmidlem 4552 ontr2exmid 4558 onsucsssucexmid 4560 onsucelsucexmid 4563 regexmidlemm 4565 ordsoexmid 4595 ordtri2or2exmid 4604 ontri2orexmidim 4605 opthprc 4711 acexmidlema 5910 acexmidlem2 5916 tposexg 6313 2dom 6861 map1 6868 endisj 6880 ssfiexmid 6934 domfiexmid 6936 exmidpw 6966 exmidpw2en 6970 djuex 7104 exmidomni 7203 exmidonfinlem 7255 exmidfodomrlemr 7264 exmidfodomrlemrALT 7265 exmidaclem 7270 pw1dom2 7289 pw1ne1 7291 sbthom 15586 |
Copyright terms: Public domain | W3C validator |