ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex Unicode version

Theorem p0ex 4174
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex  |-  { (/) }  e.  _V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3727 . 2  |-  ~P (/)  =  { (/)
}
2 0ex 4116 . . 3  |-  (/)  e.  _V
32pwex 4169 . 2  |-  ~P (/)  e.  _V
41, 3eqeltrri 2244 1  |-  { (/) }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2141   _Vcvv 2730   (/)c0 3414   ~Pcpw 3566   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589
This theorem is referenced by:  pp0ex  4175  undifexmid  4179  exmidexmid  4182  exmidundif  4192  exmidundifim  4193  ordtriexmidlem  4503  ontr2exmid  4509  onsucsssucexmid  4511  onsucelsucexmid  4514  regexmidlemm  4516  ordsoexmid  4546  ordtri2or2exmid  4555  ontri2orexmidim  4556  opthprc  4662  acexmidlema  5844  acexmidlem2  5850  tposexg  6237  2dom  6783  map1  6790  endisj  6802  ssfiexmid  6854  domfiexmid  6856  exmidpw  6886  djuex  7020  exmidomni  7118  exmidonfinlem  7170  exmidfodomrlemr  7179  exmidfodomrlemrALT  7180  exmidaclem  7185  pw1dom2  7204  pw1ne1  7206  exmid1stab  14033  sbthom  14058
  Copyright terms: Public domain W3C validator