ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  p0ex Unicode version

Theorem p0ex 4233
Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex  |-  { (/) }  e.  _V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 3780 . 2  |-  ~P (/)  =  { (/)
}
2 0ex 4172 . . 3  |-  (/)  e.  _V
32pwex 4228 . 2  |-  ~P (/)  e.  _V
41, 3eqeltrri 2279 1  |-  { (/) }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2176   _Vcvv 2772   (/)c0 3460   ~Pcpw 3616   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639
This theorem is referenced by:  pp0ex  4234  undifexmid  4238  exmidexmid  4241  exmidundif  4251  exmidundifim  4252  exmid1stab  4253  ordtriexmidlem  4568  ontr2exmid  4574  onsucsssucexmid  4576  onsucelsucexmid  4579  regexmidlemm  4581  ordsoexmid  4611  ordtri2or2exmid  4620  ontri2orexmidim  4621  opthprc  4727  acexmidlema  5937  acexmidlem2  5943  tposexg  6346  2dom  6899  map1  6906  endisj  6921  ssfiexmid  6975  domfiexmid  6977  exmidpw  7007  exmidpw2en  7011  djuex  7147  exmidomni  7246  exmidonfinlem  7303  exmidfodomrlemr  7312  exmidfodomrlemrALT  7313  exmidaclem  7322  pw1dom2  7341  pw1ne1  7343  sbthom  16002
  Copyright terms: Public domain W3C validator