| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | Unicode version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3780 |
. 2
| |
| 2 | 0ex 4172 |
. . 3
| |
| 3 | 2 | pwex 4228 |
. 2
|
| 4 | 1, 3 | eqeltrri 2279 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 |
| This theorem is referenced by: pp0ex 4234 undifexmid 4238 exmidexmid 4241 exmidundif 4251 exmidundifim 4252 exmid1stab 4253 ordtriexmidlem 4568 ontr2exmid 4574 onsucsssucexmid 4576 onsucelsucexmid 4579 regexmidlemm 4581 ordsoexmid 4611 ordtri2or2exmid 4620 ontri2orexmidim 4621 opthprc 4727 acexmidlema 5937 acexmidlem2 5943 tposexg 6346 2dom 6899 map1 6906 endisj 6921 ssfiexmid 6975 domfiexmid 6977 exmidpw 7007 exmidpw2en 7011 djuex 7147 exmidomni 7246 exmidonfinlem 7303 exmidfodomrlemr 7312 exmidfodomrlemrALT 7313 exmidaclem 7322 pw1dom2 7341 pw1ne1 7343 sbthom 16002 |
| Copyright terms: Public domain | W3C validator |