| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | Unicode version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3791 |
. 2
| |
| 2 | 0ex 4187 |
. . 3
| |
| 3 | 2 | pwex 4243 |
. 2
|
| 4 | 1, 3 | eqeltrri 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 |
| This theorem is referenced by: pp0ex 4249 undifexmid 4253 exmidexmid 4256 exmidundif 4266 exmidundifim 4267 exmid1stab 4268 ordtriexmidlem 4585 ontr2exmid 4591 onsucsssucexmid 4593 onsucelsucexmid 4596 regexmidlemm 4598 ordsoexmid 4628 ordtri2or2exmid 4637 ontri2orexmidim 4638 opthprc 4744 acexmidlema 5958 acexmidlem2 5964 tposexg 6367 2dom 6921 map1 6928 endisj 6944 ssfiexmid 6999 domfiexmid 7001 exmidpw 7031 exmidpw2en 7035 djuex 7171 exmidomni 7270 exmidonfinlem 7332 exmidfodomrlemr 7341 exmidfodomrlemrALT 7342 exmidaclem 7351 pw1dom2 7373 pw1ne1 7375 sbthom 16167 |
| Copyright terms: Public domain | W3C validator |