| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > p0ex | Unicode version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 3815 |
. 2
| |
| 2 | 0ex 4211 |
. . 3
| |
| 3 | 2 | pwex 4267 |
. 2
|
| 4 | 1, 3 | eqeltrri 2303 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: pp0ex 4273 undifexmid 4277 exmidexmid 4280 exmidundif 4290 exmidundifim 4291 exmid1stab 4292 ordtriexmidlem 4611 ontr2exmid 4617 onsucsssucexmid 4619 onsucelsucexmid 4622 regexmidlemm 4624 ordsoexmid 4654 ordtri2or2exmid 4663 ontri2orexmidim 4664 opthprc 4770 acexmidlema 5992 acexmidlem2 5998 tposexg 6404 2dom 6958 map1 6965 endisj 6983 ssfiexmid 7038 domfiexmid 7040 exmidpw 7070 exmidpw2en 7074 djuex 7210 exmidomni 7309 exmidonfinlem 7371 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 exmidaclem 7390 pw1dom2 7412 pw1ne1 7414 sbthom 16394 |
| Copyright terms: Public domain | W3C validator |