ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrex Unicode version

Theorem nrex 2622
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1  |-  ( x  e.  A  ->  -.  ps )
Assertion
Ref Expression
nrex  |-  -.  E. x  e.  A  ps

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3  |-  ( x  e.  A  ->  -.  ps )
21rgen 2583 . 2  |-  A. x  e.  A  -.  ps
3 ralnex 2518 . 2  |-  ( A. x  e.  A  -.  ps 
<->  -.  E. x  e.  A  ps )
42, 3mpbi 145 1  |-  -.  E. x  e.  A  ps
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2200   A.wral 2508   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie2 1540
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-ral 2513  df-rex 2514
This theorem is referenced by:  rex0  3509  iun0  4021  canth  5951  frec0g  6541  nominpos  9345  sqrt2irr  12679  gsum0g  13424  exmidsbthrlem  16349
  Copyright terms: Public domain W3C validator