ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrexdv Unicode version

Theorem nrexdv 2599
Description: Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrexdv.1  |-  ( (
ph  /\  x  e.  A )  ->  -.  ps )
Assertion
Ref Expression
nrexdv  |-  ( ph  ->  -.  E. x  e.  A  ps )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem nrexdv
StepHypRef Expression
1 nrexdv.1 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  -.  ps )
21ralrimiva 2579 . 2  |-  ( ph  ->  A. x  e.  A  -.  ps )
3 ralnex 2494 . 2  |-  ( A. x  e.  A  -.  ps 
<->  -.  E. x  e.  A  ps )
42, 3sylib 122 1  |-  ( ph  ->  -.  E. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    e. wcel 2176   A.wral 2484   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1470  ax-gen 1472  ax-ie2 1517  ax-4 1533  ax-17 1549
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-ral 2489  df-rex 2490
This theorem is referenced by:  ltpopr  7708  cauappcvgprlemladdru  7769  cauappcvgprlemladdrl  7770  caucvgprlemladdrl  7791  caucvgprprlemaddq  7821  dvdsle  12155
  Copyright terms: Public domain W3C validator