ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iun0 Unicode version

Theorem iun0 3973
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0  |-  U_ x  e.  A  (/)  =  (/)

Proof of Theorem iun0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . . . . 6  |-  -.  y  e.  (/)
21a1i 9 . . . . 5  |-  ( x  e.  A  ->  -.  y  e.  (/) )
32nrex 2589 . . . 4  |-  -.  E. x  e.  A  y  e.  (/)
4 eliun 3920 . . . 4  |-  ( y  e.  U_ x  e.  A  (/)  <->  E. x  e.  A  y  e.  (/) )
53, 4mtbir 672 . . 3  |-  -.  y  e.  U_ x  e.  A  (/)
65, 12false 702 . 2  |-  ( y  e.  U_ x  e.  A  (/)  <->  y  e.  (/) )
76eqriv 2193 1  |-  U_ x  e.  A  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1364    e. wcel 2167   E.wrex 2476   (/)c0 3450   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-nul 3451  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator