ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iun0 Unicode version

Theorem iun0 3816
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0  |-  U_ x  e.  A  (/)  =  (/)

Proof of Theorem iun0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 noel 3314 . . . . . 6  |-  -.  y  e.  (/)
21a1i 9 . . . . 5  |-  ( x  e.  A  ->  -.  y  e.  (/) )
32nrex 2483 . . . 4  |-  -.  E. x  e.  A  y  e.  (/)
4 eliun 3764 . . . 4  |-  ( y  e.  U_ x  e.  A  (/)  <->  E. x  e.  A  y  e.  (/) )
53, 4mtbir 637 . . 3  |-  -.  y  e.  U_ x  e.  A  (/)
65, 12false 658 . 2  |-  ( y  e.  U_ x  e.  A  (/)  <->  y  e.  (/) )
76eqriv 2097 1  |-  U_ x  e.  A  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1299    e. wcel 1448   E.wrex 2376   (/)c0 3310   U_ciun 3760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-dif 3023  df-nul 3311  df-iun 3762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator