ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iun0 Unicode version

Theorem iun0 3929
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0  |-  U_ x  e.  A  (/)  =  (/)

Proof of Theorem iun0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 noel 3418 . . . . . 6  |-  -.  y  e.  (/)
21a1i 9 . . . . 5  |-  ( x  e.  A  ->  -.  y  e.  (/) )
32nrex 2562 . . . 4  |-  -.  E. x  e.  A  y  e.  (/)
4 eliun 3877 . . . 4  |-  ( y  e.  U_ x  e.  A  (/)  <->  E. x  e.  A  y  e.  (/) )
53, 4mtbir 666 . . 3  |-  -.  y  e.  U_ x  e.  A  (/)
65, 12false 696 . 2  |-  ( y  e.  U_ x  e.  A  (/)  <->  y  e.  (/) )
76eqriv 2167 1  |-  U_ x  e.  A  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1348    e. wcel 2141   E.wrex 2449   (/)c0 3414   U_ciun 3873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-dif 3123  df-nul 3415  df-iun 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator