ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iun0 Unicode version

Theorem iun0 3938
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iun0  |-  U_ x  e.  A  (/)  =  (/)

Proof of Theorem iun0
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 noel 3424 . . . . . 6  |-  -.  y  e.  (/)
21a1i 9 . . . . 5  |-  ( x  e.  A  ->  -.  y  e.  (/) )
32nrex 2567 . . . 4  |-  -.  E. x  e.  A  y  e.  (/)
4 eliun 3886 . . . 4  |-  ( y  e.  U_ x  e.  A  (/)  <->  E. x  e.  A  y  e.  (/) )
53, 4mtbir 671 . . 3  |-  -.  y  e.  U_ x  e.  A  (/)
65, 12false 701 . 2  |-  ( y  e.  U_ x  e.  A  (/)  <->  y  e.  (/) )
76eqriv 2172 1  |-  U_ x  e.  A  (/)  =  (/)
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1353    e. wcel 2146   E.wrex 2454   (/)c0 3420   U_ciun 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-dif 3129  df-nul 3421  df-iun 3884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator