Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iun0 | Unicode version |
Description: An indexed union of the empty set is empty. (Contributed by NM, 26-Mar-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
iun0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3424 | . . . . . 6 | |
2 | 1 | a1i 9 | . . . . 5 |
3 | 2 | nrex 2567 | . . . 4 |
4 | eliun 3886 | . . . 4 | |
5 | 3, 4 | mtbir 671 | . . 3 |
6 | 5, 1 | 2false 701 | . 2 |
7 | 6 | eqriv 2172 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wceq 1353 wcel 2146 wrex 2454 c0 3420 ciun 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-nul 3421 df-iun 3884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |