![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nrex | GIF version |
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
Ref | Expression |
---|---|
nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
Ref | Expression |
---|---|
nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
2 | 1 | rgen 2543 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
3 | ralnex 2478 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
4 | 2, 3 | mpbi 145 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2160 ∀wral 2468 ∃wrex 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ie2 1505 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-ral 2473 df-rex 2474 |
This theorem is referenced by: rex0 3455 iun0 3958 canth 5845 frec0g 6416 nominpos 9174 sqrt2irr 12180 exmidsbthrlem 15168 |
Copyright terms: Public domain | W3C validator |