ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrex GIF version

Theorem nrex 2546
Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
Hypothesis
Ref Expression
nrex.1 (𝑥𝐴 → ¬ 𝜓)
Assertion
Ref Expression
nrex ¬ ∃𝑥𝐴 𝜓

Proof of Theorem nrex
StepHypRef Expression
1 nrex.1 . . 3 (𝑥𝐴 → ¬ 𝜓)
21rgen 2507 . 2 𝑥𝐴 ¬ 𝜓
3 ralnex 2442 . 2 (∀𝑥𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥𝐴 𝜓)
42, 3mpbi 144 1 ¬ ∃𝑥𝐴 𝜓
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wcel 2125  wral 2432  wrex 2433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1424  ax-gen 1426  ax-ie2 1471
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-fal 1338  df-ral 2437  df-rex 2438
This theorem is referenced by:  rex0  3407  iun0  3901  frec0g  6334  nominpos  9049  sqrt2irr  12008  exmidsbthrlem  13542
  Copyright terms: Public domain W3C validator