| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nrex | GIF version | ||
| Description: Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.) |
| Ref | Expression |
|---|---|
| nrex.1 | ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) |
| Ref | Expression |
|---|---|
| nrex | ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nrex.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ¬ 𝜓) | |
| 2 | 1 | rgen 2563 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ¬ 𝜓 |
| 3 | ralnex 2498 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜓 ↔ ¬ ∃𝑥 ∈ 𝐴 𝜓) | |
| 4 | 2, 3 | mpbi 145 | 1 ⊢ ¬ ∃𝑥 ∈ 𝐴 𝜓 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2180 ∀wral 2488 ∃wrex 2489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1473 ax-gen 1475 ax-ie2 1520 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-ral 2493 df-rex 2494 |
| This theorem is referenced by: rex0 3489 iun0 4001 canth 5925 frec0g 6513 nominpos 9317 sqrt2irr 12650 gsum0g 13395 exmidsbthrlem 16301 |
| Copyright terms: Public domain | W3C validator |