Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuni Unicode version

Theorem onuni 4326
 Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
onuni

Proof of Theorem onuni
StepHypRef Expression
1 onss 4325 . 2
2 ssonuni 4320 . 2
31, 2mpd 13 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1439   wss 3002  cuni 3661  con0 4201 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-un 4271 This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-in 3008  df-ss 3015  df-uni 3662  df-tr 3945  df-iord 4204  df-on 4206 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator