ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonuni Unicode version

Theorem ssonuni 4579
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 4578 . 2  |-  ( A 
C_  On  ->  Ord  U. A )
2 uniexg 4529 . . 3  |-  ( A  e.  V  ->  U. A  e.  _V )
3 elong 4463 . . 3  |-  ( U. A  e.  _V  ->  ( U. A  e.  On  <->  Ord  U. A ) )
42, 3syl 14 . 2  |-  ( A  e.  V  ->  ( U. A  e.  On  <->  Ord  U. A ) )
51, 4imbitrrid 156 1  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   U.cuni 3887   Ord word 4452   Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458
This theorem is referenced by:  ssonunii  4580  onun2  4581  onuni  4585  iunon  6428
  Copyright terms: Public domain W3C validator