ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonuni Unicode version

Theorem ssonuni 4465
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 4464 . 2  |-  ( A 
C_  On  ->  Ord  U. A )
2 uniexg 4417 . . 3  |-  ( A  e.  V  ->  U. A  e.  _V )
3 elong 4351 . . 3  |-  ( U. A  e.  _V  ->  ( U. A  e.  On  <->  Ord  U. A ) )
42, 3syl 14 . 2  |-  ( A  e.  V  ->  ( U. A  e.  On  <->  Ord  U. A ) )
51, 4syl5ibr 155 1  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726    C_ wss 3116   U.cuni 3789   Ord word 4340   Oncon0 4341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-in 3122  df-ss 3129  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346
This theorem is referenced by:  ssonunii  4466  onun2  4467  onuni  4471  iunon  6252
  Copyright terms: Public domain W3C validator