Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssonuni | Unicode version |
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.) |
Ref | Expression |
---|---|
ssonuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssorduni 4471 | . 2 | |
2 | uniexg 4424 | . . 3 | |
3 | elong 4358 | . . 3 | |
4 | 2, 3 | syl 14 | . 2 |
5 | 1, 4 | syl5ibr 155 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2141 cvv 2730 wss 3121 cuni 3796 word 4347 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: ssonunii 4473 onun2 4474 onuni 4478 iunon 6263 |
Copyright terms: Public domain | W3C validator |