ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssonuni Unicode version

Theorem ssonuni 4520
Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.)
Assertion
Ref Expression
ssonuni  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )

Proof of Theorem ssonuni
StepHypRef Expression
1 ssorduni 4519 . 2  |-  ( A 
C_  On  ->  Ord  U. A )
2 uniexg 4470 . . 3  |-  ( A  e.  V  ->  U. A  e.  _V )
3 elong 4404 . . 3  |-  ( U. A  e.  _V  ->  ( U. A  e.  On  <->  Ord  U. A ) )
42, 3syl 14 . 2  |-  ( A  e.  V  ->  ( U. A  e.  On  <->  Ord  U. A ) )
51, 4imbitrrid 156 1  |-  ( A  e.  V  ->  ( A  C_  On  ->  U. A  e.  On ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3153   U.cuni 3835   Ord word 4393   Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by:  ssonunii  4521  onun2  4522  onuni  4526  iunon  6337
  Copyright terms: Public domain W3C validator