| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssonuni | Unicode version | ||
| Description: The union of a set of ordinal numbers is an ordinal number. Theorem 9 of [Suppes] p. 132. (Contributed by NM, 1-Nov-2003.) |
| Ref | Expression |
|---|---|
| ssonuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssorduni 4535 |
. 2
| |
| 2 | uniexg 4486 |
. . 3
| |
| 3 | elong 4420 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | 1, 4 | imbitrrid 156 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 |
| This theorem is referenced by: ssonunii 4537 onun2 4538 onuni 4542 iunon 6370 |
| Copyright terms: Public domain | W3C validator |