ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuni GIF version

Theorem onuni 4563
Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
onuni (𝐴 ∈ On → 𝐴 ∈ On)

Proof of Theorem onuni
StepHypRef Expression
1 onss 4562 . 2 (𝐴 ∈ On → 𝐴 ⊆ On)
2 ssonuni 4557 . 2 (𝐴 ∈ On → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2mpd 13 1 (𝐴 ∈ On → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  wss 3177   cuni 3867  Oncon0 4431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-in 3183  df-ss 3190  df-uni 3868  df-tr 4162  df-iord 4434  df-on 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator