ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuni GIF version

Theorem onuni 4526
Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
onuni (𝐴 ∈ On → 𝐴 ∈ On)

Proof of Theorem onuni
StepHypRef Expression
1 onss 4525 . 2 (𝐴 ∈ On → 𝐴 ⊆ On)
2 ssonuni 4520 . 2 (𝐴 ∈ On → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2mpd 13 1 (𝐴 ∈ On → 𝐴 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  wss 3153   cuni 3835  Oncon0 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4397  df-on 4399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator