| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onuni | GIF version | ||
| Description: The union of an ordinal number is an ordinal number. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| onuni | ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onss 4562 | . 2 ⊢ (𝐴 ∈ On → 𝐴 ⊆ On) | |
| 2 | ssonuni 4557 | . 2 ⊢ (𝐴 ∈ On → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 1, 2 | mpd 13 | 1 ⊢ (𝐴 ∈ On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 ⊆ wss 3177 ∪ cuni 3867 Oncon0 4431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-in 3183 df-ss 3190 df-uni 3868 df-tr 4162 df-iord 4434 df-on 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |