ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc1 GIF version

Theorem opprc1 3787
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3786. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 108 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
21con3i 627 . 2 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 opprc 3786 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
42, 3syl 14 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wcel 2141  Vcvv 2730  c0 3414  cop 3586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415  df-op 3592
This theorem is referenced by:  brprcneu  5489
  Copyright terms: Public domain W3C validator