ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprc1 GIF version

Theorem opprc1 3780
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3779. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 108 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
21con3i 622 . 2 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 opprc 3779 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ⟨𝐴, 𝐵⟩ = ∅)
42, 3syl 14 1 𝐴 ∈ V → ⟨𝐴, 𝐵⟩ = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1343  wcel 2136  Vcvv 2726  c0 3409  cop 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-nul 3410  df-op 3585
This theorem is referenced by:  brprcneu  5479
  Copyright terms: Public domain W3C validator