Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opprc1 | GIF version |
Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 3758. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
opprc1 | ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
2 | 1 | con3i 622 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | opprc 3758 | . 2 ⊢ (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → 〈𝐴, 𝐵〉 = ∅) | |
4 | 2, 3 | syl 14 | 1 ⊢ (¬ 𝐴 ∈ V → 〈𝐴, 𝐵〉 = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1332 ∈ wcel 2125 Vcvv 2709 ∅c0 3390 〈cop 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-dif 3100 df-nul 3391 df-op 3565 |
This theorem is referenced by: brprcneu 5454 |
Copyright terms: Public domain | W3C validator |