ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdvdsexp Unicode version

Theorem prmdvdsexp 12341
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  N  e.  NN )  ->  ( P  ||  ( A ^ N )  <->  P  ||  A
) )

Proof of Theorem prmdvdsexp
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5933 . . . . . . 7  |-  ( m  =  1  ->  ( A ^ m )  =  ( A ^ 1 ) )
21breq2d 4046 . . . . . 6  |-  ( m  =  1  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ 1 ) ) )
32bibi1d 233 . . . . 5  |-  ( m  =  1  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ 1 )  <-> 
P  ||  A )
) )
43imbi2d 230 . . . 4  |-  ( m  =  1  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
1 )  <->  P  ||  A
) ) ) )
5 oveq2 5933 . . . . . . 7  |-  ( m  =  k  ->  ( A ^ m )  =  ( A ^ k
) )
65breq2d 4046 . . . . . 6  |-  ( m  =  k  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ k ) ) )
76bibi1d 233 . . . . 5  |-  ( m  =  k  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ k )  <-> 
P  ||  A )
) )
87imbi2d 230 . . . 4  |-  ( m  =  k  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
k )  <->  P  ||  A
) ) ) )
9 oveq2 5933 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  ( A ^ m )  =  ( A ^ (
k  +  1 ) ) )
109breq2d 4046 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ ( k  +  1 ) ) ) )
1110bibi1d 233 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ ( k  +  1 ) )  <-> 
P  ||  A )
) )
1211imbi2d 230 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
( k  +  1 ) )  <->  P  ||  A
) ) ) )
13 oveq2 5933 . . . . . . 7  |-  ( m  =  N  ->  ( A ^ m )  =  ( A ^ N
) )
1413breq2d 4046 . . . . . 6  |-  ( m  =  N  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ N ) ) )
1514bibi1d 233 . . . . 5  |-  ( m  =  N  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ N )  <-> 
P  ||  A )
) )
1615imbi2d 230 . . . 4  |-  ( m  =  N  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ N )  <->  P  ||  A
) ) ) )
17 zcn 9348 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
1817adantl 277 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  CC )
1918exp1d 10777 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ 1 )  =  A )
2019breq2d 4046 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
1 )  <->  P  ||  A
) )
21 nnnn0 9273 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN0 )
22 expp1 10655 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
2318, 21, 22syl2an 289 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
2423breq2d 4046 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( P  ||  ( A ^ ( k  +  1 ) )  <-> 
P  ||  ( ( A ^ k )  x.  A ) ) )
25 simpll 527 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  P  e.  Prime )
26 simpr 110 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  ZZ )
27 zexpcl 10663 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
2826, 21, 27syl2an 289 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( A ^
k )  e.  ZZ )
29 simplr 528 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  A  e.  ZZ )
30 euclemma 12339 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A ^ k )  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  ||  ( ( A ^ k )  x.  A )  <->  ( P  ||  ( A ^ k
)  \/  P  ||  A ) ) )
3125, 28, 29, 30syl3anc 1249 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( P  ||  ( ( A ^
k )  x.  A
)  <->  ( P  ||  ( A ^ k )  \/  P  ||  A
) ) )
3224, 31bitrd 188 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( P  ||  ( A ^ ( k  +  1 ) )  <-> 
( P  ||  ( A ^ k )  \/  P  ||  A ) ) )
33 orbi1 793 . . . . . . . . 9  |-  ( ( P  ||  ( A ^ k )  <->  P  ||  A
)  ->  ( ( P  ||  ( A ^
k )  \/  P  ||  A )  <->  ( P  ||  A  \/  P  ||  A ) ) )
34 oridm 758 . . . . . . . . 9  |-  ( ( P  ||  A  \/  P  ||  A )  <->  P  ||  A
)
3533, 34bitrdi 196 . . . . . . . 8  |-  ( ( P  ||  ( A ^ k )  <->  P  ||  A
)  ->  ( ( P  ||  ( A ^
k )  \/  P  ||  A )  <->  P  ||  A
) )
3635bibi2d 232 . . . . . . 7  |-  ( ( P  ||  ( A ^ k )  <->  P  ||  A
)  ->  ( ( P  ||  ( A ^
( k  +  1 ) )  <->  ( P  ||  ( A ^ k
)  \/  P  ||  A ) )  <->  ( P  ||  ( A ^ (
k  +  1 ) )  <->  P  ||  A ) ) )
3732, 36syl5ibcom 155 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( ( P 
||  ( A ^
k )  <->  P  ||  A
)  ->  ( P  ||  ( A ^ (
k  +  1 ) )  <->  P  ||  A ) ) )
3837expcom 116 . . . . 5  |-  ( k  e.  NN  ->  (
( P  e.  Prime  /\  A  e.  ZZ )  ->  ( ( P 
||  ( A ^
k )  <->  P  ||  A
)  ->  ( P  ||  ( A ^ (
k  +  1 ) )  <->  P  ||  A ) ) ) )
3938a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ k )  <-> 
P  ||  A )
)  ->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
( k  +  1 ) )  <->  P  ||  A
) ) ) )
404, 8, 12, 16, 20, 39nnind 9023 . . 3  |-  ( N  e.  NN  ->  (
( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ N )  <-> 
P  ||  A )
) )
4140impcom 125 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  N  e.  NN )  ->  ( P  ||  ( A ^ N )  <-> 
P  ||  A )
)
42413impa 1196 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  N  e.  NN )  ->  ( P  ||  ( A ^ N )  <->  P  ||  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901   NNcn 9007   NN0cn0 9266   ZZcz 9343   ^cexp 10647    || cdvds 11969   Primecprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301
This theorem is referenced by:  prmdvdsexpb  12342  rpexp  12346  pythagtriplem4  12462  lgslem4  15328  2sqlem3  15442
  Copyright terms: Public domain W3C validator