ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmdvdsexp Unicode version

Theorem prmdvdsexp 11833
Description: A prime divides a positive power of an integer iff it divides the integer. (Contributed by Mario Carneiro, 24-Feb-2014.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
prmdvdsexp  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  N  e.  NN )  ->  ( P  ||  ( A ^ N )  <->  P  ||  A
) )

Proof of Theorem prmdvdsexp
Dummy variables  m  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . . 7  |-  ( m  =  1  ->  ( A ^ m )  =  ( A ^ 1 ) )
21breq2d 3941 . . . . . 6  |-  ( m  =  1  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ 1 ) ) )
32bibi1d 232 . . . . 5  |-  ( m  =  1  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ 1 )  <-> 
P  ||  A )
) )
43imbi2d 229 . . . 4  |-  ( m  =  1  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
1 )  <->  P  ||  A
) ) ) )
5 oveq2 5782 . . . . . . 7  |-  ( m  =  k  ->  ( A ^ m )  =  ( A ^ k
) )
65breq2d 3941 . . . . . 6  |-  ( m  =  k  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ k ) ) )
76bibi1d 232 . . . . 5  |-  ( m  =  k  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ k )  <-> 
P  ||  A )
) )
87imbi2d 229 . . . 4  |-  ( m  =  k  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
k )  <->  P  ||  A
) ) ) )
9 oveq2 5782 . . . . . . 7  |-  ( m  =  ( k  +  1 )  ->  ( A ^ m )  =  ( A ^ (
k  +  1 ) ) )
109breq2d 3941 . . . . . 6  |-  ( m  =  ( k  +  1 )  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ ( k  +  1 ) ) ) )
1110bibi1d 232 . . . . 5  |-  ( m  =  ( k  +  1 )  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ ( k  +  1 ) )  <-> 
P  ||  A )
) )
1211imbi2d 229 . . . 4  |-  ( m  =  ( k  +  1 )  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
( k  +  1 ) )  <->  P  ||  A
) ) ) )
13 oveq2 5782 . . . . . . 7  |-  ( m  =  N  ->  ( A ^ m )  =  ( A ^ N
) )
1413breq2d 3941 . . . . . 6  |-  ( m  =  N  ->  ( P  ||  ( A ^
m )  <->  P  ||  ( A ^ N ) ) )
1514bibi1d 232 . . . . 5  |-  ( m  =  N  ->  (
( P  ||  ( A ^ m )  <->  P  ||  A
)  <->  ( P  ||  ( A ^ N )  <-> 
P  ||  A )
) )
1615imbi2d 229 . . . 4  |-  ( m  =  N  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ m )  <-> 
P  ||  A )
)  <->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ N )  <->  P  ||  A
) ) ) )
17 zcn 9066 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  CC )
1817adantl 275 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  CC )
1918exp1d 10426 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ 1 )  =  A )
2019breq2d 3941 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
1 )  <->  P  ||  A
) )
21 nnnn0 8991 . . . . . . . . . 10  |-  ( k  e.  NN  ->  k  e.  NN0 )
22 expp1 10307 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
2318, 21, 22syl2an 287 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
2423breq2d 3941 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( P  ||  ( A ^ ( k  +  1 ) )  <-> 
P  ||  ( ( A ^ k )  x.  A ) ) )
25 simpll 518 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  P  e.  Prime )
26 simpr 109 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  ZZ )
27 zexpcl 10315 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  ZZ )
2826, 21, 27syl2an 287 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( A ^
k )  e.  ZZ )
29 simplr 519 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  A  e.  ZZ )
30 euclemma 11831 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( A ^ k )  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  ||  ( ( A ^ k )  x.  A )  <->  ( P  ||  ( A ^ k
)  \/  P  ||  A ) ) )
3125, 28, 29, 30syl3anc 1216 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( P  ||  ( ( A ^
k )  x.  A
)  <->  ( P  ||  ( A ^ k )  \/  P  ||  A
) ) )
3224, 31bitrd 187 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( P  ||  ( A ^ ( k  +  1 ) )  <-> 
( P  ||  ( A ^ k )  \/  P  ||  A ) ) )
33 orbi1 781 . . . . . . . . 9  |-  ( ( P  ||  ( A ^ k )  <->  P  ||  A
)  ->  ( ( P  ||  ( A ^
k )  \/  P  ||  A )  <->  ( P  ||  A  \/  P  ||  A ) ) )
34 oridm 746 . . . . . . . . 9  |-  ( ( P  ||  A  \/  P  ||  A )  <->  P  ||  A
)
3533, 34syl6bb 195 . . . . . . . 8  |-  ( ( P  ||  ( A ^ k )  <->  P  ||  A
)  ->  ( ( P  ||  ( A ^
k )  \/  P  ||  A )  <->  P  ||  A
) )
3635bibi2d 231 . . . . . . 7  |-  ( ( P  ||  ( A ^ k )  <->  P  ||  A
)  ->  ( ( P  ||  ( A ^
( k  +  1 ) )  <->  ( P  ||  ( A ^ k
)  \/  P  ||  A ) )  <->  ( P  ||  ( A ^ (
k  +  1 ) )  <->  P  ||  A ) ) )
3732, 36syl5ibcom 154 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  k  e.  NN )  ->  ( ( P 
||  ( A ^
k )  <->  P  ||  A
)  ->  ( P  ||  ( A ^ (
k  +  1 ) )  <->  P  ||  A ) ) )
3837expcom 115 . . . . 5  |-  ( k  e.  NN  ->  (
( P  e.  Prime  /\  A  e.  ZZ )  ->  ( ( P 
||  ( A ^
k )  <->  P  ||  A
)  ->  ( P  ||  ( A ^ (
k  +  1 ) )  <->  P  ||  A ) ) ) )
3938a2d 26 . . . 4  |-  ( k  e.  NN  ->  (
( ( P  e. 
Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ k )  <-> 
P  ||  A )
)  ->  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^
( k  +  1 ) )  <->  P  ||  A
) ) ) )
404, 8, 12, 16, 20, 39nnind 8743 . . 3  |-  ( N  e.  NN  ->  (
( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A ^ N )  <-> 
P  ||  A )
) )
4140impcom 124 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  N  e.  NN )  ->  ( P  ||  ( A ^ N )  <-> 
P  ||  A )
)
42413impa 1176 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  N  e.  NN )  ->  ( P  ||  ( A ^ N )  <->  P  ||  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   CCcc 7625   1c1 7628    + caddc 7630    x. cmul 7632   NNcn 8727   NN0cn0 8984   ZZcz 9061   ^cexp 10299    || cdvds 11500   Primecprime 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-1o 6313  df-2o 6314  df-er 6429  df-en 6635  df-sup 6871  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-n0 8985  df-z 9062  df-uz 9334  df-q 9419  df-rp 9449  df-fz 9798  df-fzo 9927  df-fl 10050  df-mod 10103  df-seqfrec 10226  df-exp 10300  df-cj 10621  df-re 10622  df-im 10623  df-rsqrt 10777  df-abs 10778  df-dvds 11501  df-gcd 11643  df-prm 11796
This theorem is referenced by:  prmdvdsexpb  11834  rpexp  11838
  Copyright terms: Public domain W3C validator