ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqpweven Unicode version

Theorem sqpweven 12692
Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
sqpweven  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Distinct variable groups:    x, y, z   
x, J, y    x, A, y, z    x, F, y, z
Allowed substitution hint:    J( z)

Proof of Theorem sqpweven
StepHypRef Expression
1 oddpwdc.j . . . . . . . 8  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
2 oddpwdc.f . . . . . . . 8  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 12691 . . . . . . 7  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
4 f1ocnv 5584 . . . . . . 7  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  `' F : NN -1-1-onto-> ( J  X.  NN0 ) )
5 f1of 5571 . . . . . . 7  |-  ( `' F : NN -1-1-onto-> ( J  X.  NN0 )  ->  `' F : NN
--> ( J  X.  NN0 ) )
63, 4, 5mp2b 8 . . . . . 6  |-  `' F : NN --> ( J  X.  NN0 )
76ffvelcdmi 5768 . . . . 5  |-  ( A  e.  NN  ->  ( `' F `  A )  e.  ( J  X.  NN0 ) )
8 xp2nd 6310 . . . . 5  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
97, 8syl 14 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
109nn0zd 9563 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e.  ZZ )
11 2nn 9268 . . . . 5  |-  2  e.  NN
1211a1i 9 . . . 4  |-  ( A  e.  NN  ->  2  e.  NN )
1312nnzd 9564 . . 3  |-  ( A  e.  NN  ->  2  e.  ZZ )
14 dvdsmul2 12320 . . 3  |-  ( ( ( 2nd `  ( `' F `  A ) )  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
1510, 13, 14syl2anc 411 . 2  |-  ( A  e.  NN  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
16 xp1st 6309 . . . . . . . . . 10  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 1st `  ( `' F `  A ) )  e.  J )
177, 16syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  J )
18 breq2 4086 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( 2 
||  z  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
1918notbid 671 . . . . . . . . . . 11  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2019, 1elrab2 2962 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  <->  ( ( 1st `  ( `' F `  A ) )  e.  NN  /\  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2120simplbi 274 . . . . . . . . 9  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  -> 
( 1st `  ( `' F `  A ) )  e.  NN )
2217, 21syl 14 . . . . . . . 8  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  NN )
2322nnsqcld 10911 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN )
2420simprbi 275 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
2517, 24syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
26 2prm 12644 . . . . . . . . . 10  |-  2  e.  Prime
2722nnzd 9564 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  ZZ )
28 euclemma 12663 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  ( 2 
||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) ) ) )
29 oridm 762 . . . . . . . . . . 11  |-  ( ( 2  ||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) )
3028, 29bitrdi 196 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3126, 27, 27, 30mp3an2i 1376 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3225, 31mtbird 677 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3322nncnd 9120 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  CC )
3433sqvald 10887 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  =  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3534breq2d 4094 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 )  <->  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) ) )
3632, 35mtbird 677 . . . . . . 7  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )
37 breq2 4086 . . . . . . . . 9  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
2  ||  z  <->  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3837notbid 671 . . . . . . . 8  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3938, 1elrab2 2962 . . . . . . 7  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  <->  ( (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN  /\  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
4023, 36, 39sylanbrc 417 . . . . . 6  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J )
4112nnnn0d 9418 . . . . . . 7  |-  ( A  e.  NN  ->  2  e.  NN0 )
429, 41nn0mulcld 9423 . . . . . 6  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )
43 opelxp 4748 . . . . . 6  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  <->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 ) )
4440, 42, 43sylanbrc 417 . . . . 5  |-  ( A  e.  NN  ->  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)
4512nncnd 9120 . . . . . . . . 9  |-  ( A  e.  NN  ->  2  e.  CC )
4645, 41, 9expmuld 10893 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )
4746oveq1d 6015 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4812, 42nnexpcld 10912 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  e.  NN )
4948, 23nnmulcld 9155 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )
50 oveq2 6008 . . . . . . . . 9  |-  ( x  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
( 2 ^ y
)  x.  x )  =  ( ( 2 ^ y )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
51 oveq2 6008 . . . . . . . . . 10  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
2 ^ y )  =  ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
5251oveq1d 6015 . . . . . . . . 9  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
( 2 ^ y
)  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5350, 52, 2ovmpog 6138 . . . . . . . 8  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0  /\  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )  ->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5440, 42, 49, 53syl3anc 1271 . . . . . . 7  |-  ( A  e.  NN  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
55 f1ocnvfv2 5901 . . . . . . . . . . . . 13  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  A  e.  NN )  ->  ( F `  ( `' F `  A ) )  =  A )
563, 55mpan 424 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  A )
57 1st2nd2 6319 . . . . . . . . . . . . . 14  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
587, 57syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
5958fveq2d 5630 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  ( F `
 <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
6056, 59eqtr3d 2264 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
61 df-ov 6003 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
6260, 61eqtr4di 2280 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  =  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) ) )
6312, 9nnexpcld 10912 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  NN )
6463, 22nnmulcld 9155 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )
65 oveq2 6008 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) ) )
66 oveq2 6008 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) )
6766oveq1d 6015 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6865, 67, 2ovmpog 6138 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( `' F `  A ) )  e.  J  /\  ( 2nd `  ( `' F `  A ) )  e.  NN0  /\  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )  -> 
( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6917, 9, 64, 68syl3anc 1271 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7062, 69eqtrd 2262 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7170oveq1d 6015 . . . . . . . 8  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 ) )
7263nncnd 9120 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  CC )
7372, 33sqmuld 10902 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7471, 73eqtrd 2262 . . . . . . 7  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7547, 54, 743eqtr4rd 2273 . . . . . 6  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 1st `  ( `' F `  A ) ) ^
2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
76 df-ov 6003 . . . . . 6  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
7775, 76eqtr2di 2279 . . . . 5  |-  ( A  e.  NN  ->  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 ) )
78 f1ocnvfv 5902 . . . . . 6  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
793, 78mpan 424 . . . . 5  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
8044, 77, 79sylc 62 . . . 4  |-  ( A  e.  NN  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )
8180fveq2d 5630 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
)
82 op2ndg 6295 . . . 4  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )  -> 
( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8340, 42, 82syl2anc 411 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )  =  (
( 2nd `  ( `' F `  A ) )  x.  2 ) )
8481, 83eqtrd 2262 . 2  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8515, 84breqtrrd 4110 1  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   <.cop 3669   class class class wbr 4082    X. cxp 4716   `'ccnv 4717   -->wf 5313   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   1stc1st 6282   2ndc2nd 6283    x. cmul 8000   NNcn 9106   2c2 9157   NN0cn0 9365   ZZcz 9442   ^cexp 10755    || cdvds 12293   Primecprime 12624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470  df-prm 12625
This theorem is referenced by:  sqne2sq  12694
  Copyright terms: Public domain W3C validator