| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sqpweven | Unicode version | ||
| Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.) |
| Ref | Expression |
|---|---|
| oddpwdc.j |
|
| oddpwdc.f |
|
| Ref | Expression |
|---|---|
| sqpweven |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddpwdc.j |
. . . . . . . 8
| |
| 2 | oddpwdc.f |
. . . . . . . 8
| |
| 3 | 1, 2 | oddpwdc 12496 |
. . . . . . 7
|
| 4 | f1ocnv 5535 |
. . . . . . 7
| |
| 5 | f1of 5522 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | mp2b 8 |
. . . . . 6
|
| 7 | 6 | ffvelcdmi 5714 |
. . . . 5
|
| 8 | xp2nd 6252 |
. . . . 5
| |
| 9 | 7, 8 | syl 14 |
. . . 4
|
| 10 | 9 | nn0zd 9493 |
. . 3
|
| 11 | 2nn 9198 |
. . . . 5
| |
| 12 | 11 | a1i 9 |
. . . 4
|
| 13 | 12 | nnzd 9494 |
. . 3
|
| 14 | dvdsmul2 12125 |
. . 3
| |
| 15 | 10, 13, 14 | syl2anc 411 |
. 2
|
| 16 | xp1st 6251 |
. . . . . . . . . 10
| |
| 17 | 7, 16 | syl 14 |
. . . . . . . . 9
|
| 18 | breq2 4048 |
. . . . . . . . . . . 12
| |
| 19 | 18 | notbid 669 |
. . . . . . . . . . 11
|
| 20 | 19, 1 | elrab2 2932 |
. . . . . . . . . 10
|
| 21 | 20 | simplbi 274 |
. . . . . . . . 9
|
| 22 | 17, 21 | syl 14 |
. . . . . . . 8
|
| 23 | 22 | nnsqcld 10839 |
. . . . . . 7
|
| 24 | 20 | simprbi 275 |
. . . . . . . . . 10
|
| 25 | 17, 24 | syl 14 |
. . . . . . . . 9
|
| 26 | 2prm 12449 |
. . . . . . . . . 10
| |
| 27 | 22 | nnzd 9494 |
. . . . . . . . . 10
|
| 28 | euclemma 12468 |
. . . . . . . . . . 11
| |
| 29 | oridm 759 |
. . . . . . . . . . 11
| |
| 30 | 28, 29 | bitrdi 196 |
. . . . . . . . . 10
|
| 31 | 26, 27, 27, 30 | mp3an2i 1355 |
. . . . . . . . 9
|
| 32 | 25, 31 | mtbird 675 |
. . . . . . . 8
|
| 33 | 22 | nncnd 9050 |
. . . . . . . . . 10
|
| 34 | 33 | sqvald 10815 |
. . . . . . . . 9
|
| 35 | 34 | breq2d 4056 |
. . . . . . . 8
|
| 36 | 32, 35 | mtbird 675 |
. . . . . . 7
|
| 37 | breq2 4048 |
. . . . . . . . 9
| |
| 38 | 37 | notbid 669 |
. . . . . . . 8
|
| 39 | 38, 1 | elrab2 2932 |
. . . . . . 7
|
| 40 | 23, 36, 39 | sylanbrc 417 |
. . . . . 6
|
| 41 | 12 | nnnn0d 9348 |
. . . . . . 7
|
| 42 | 9, 41 | nn0mulcld 9353 |
. . . . . 6
|
| 43 | opelxp 4705 |
. . . . . 6
| |
| 44 | 40, 42, 43 | sylanbrc 417 |
. . . . 5
|
| 45 | 12 | nncnd 9050 |
. . . . . . . . 9
|
| 46 | 45, 41, 9 | expmuld 10821 |
. . . . . . . 8
|
| 47 | 46 | oveq1d 5959 |
. . . . . . 7
|
| 48 | 12, 42 | nnexpcld 10840 |
. . . . . . . . 9
|
| 49 | 48, 23 | nnmulcld 9085 |
. . . . . . . 8
|
| 50 | oveq2 5952 |
. . . . . . . . 9
| |
| 51 | oveq2 5952 |
. . . . . . . . . 10
| |
| 52 | 51 | oveq1d 5959 |
. . . . . . . . 9
|
| 53 | 50, 52, 2 | ovmpog 6080 |
. . . . . . . 8
|
| 54 | 40, 42, 49, 53 | syl3anc 1250 |
. . . . . . 7
|
| 55 | f1ocnvfv2 5847 |
. . . . . . . . . . . . 13
| |
| 56 | 3, 55 | mpan 424 |
. . . . . . . . . . . 12
|
| 57 | 1st2nd2 6261 |
. . . . . . . . . . . . . 14
| |
| 58 | 7, 57 | syl 14 |
. . . . . . . . . . . . 13
|
| 59 | 58 | fveq2d 5580 |
. . . . . . . . . . . 12
|
| 60 | 56, 59 | eqtr3d 2240 |
. . . . . . . . . . 11
|
| 61 | df-ov 5947 |
. . . . . . . . . . 11
| |
| 62 | 60, 61 | eqtr4di 2256 |
. . . . . . . . . 10
|
| 63 | 12, 9 | nnexpcld 10840 |
. . . . . . . . . . . 12
|
| 64 | 63, 22 | nnmulcld 9085 |
. . . . . . . . . . 11
|
| 65 | oveq2 5952 |
. . . . . . . . . . . 12
| |
| 66 | oveq2 5952 |
. . . . . . . . . . . . 13
| |
| 67 | 66 | oveq1d 5959 |
. . . . . . . . . . . 12
|
| 68 | 65, 67, 2 | ovmpog 6080 |
. . . . . . . . . . 11
|
| 69 | 17, 9, 64, 68 | syl3anc 1250 |
. . . . . . . . . 10
|
| 70 | 62, 69 | eqtrd 2238 |
. . . . . . . . 9
|
| 71 | 70 | oveq1d 5959 |
. . . . . . . 8
|
| 72 | 63 | nncnd 9050 |
. . . . . . . . 9
|
| 73 | 72, 33 | sqmuld 10830 |
. . . . . . . 8
|
| 74 | 71, 73 | eqtrd 2238 |
. . . . . . 7
|
| 75 | 47, 54, 74 | 3eqtr4rd 2249 |
. . . . . 6
|
| 76 | df-ov 5947 |
. . . . . 6
| |
| 77 | 75, 76 | eqtr2di 2255 |
. . . . 5
|
| 78 | f1ocnvfv 5848 |
. . . . . 6
| |
| 79 | 3, 78 | mpan 424 |
. . . . 5
|
| 80 | 44, 77, 79 | sylc 62 |
. . . 4
|
| 81 | 80 | fveq2d 5580 |
. . 3
|
| 82 | op2ndg 6237 |
. . . 4
| |
| 83 | 40, 42, 82 | syl2anc 411 |
. . 3
|
| 84 | 81, 83 | eqtrd 2238 |
. 2
|
| 85 | 15, 84 | breqtrrd 4072 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 ax-caucvg 8045 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-2o 6503 df-er 6620 df-en 6828 df-sup 7086 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-4 9097 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fz 10131 df-fzo 10265 df-fl 10413 df-mod 10468 df-seqfrec 10593 df-exp 10684 df-cj 11153 df-re 11154 df-im 11155 df-rsqrt 11309 df-abs 11310 df-dvds 12099 df-gcd 12275 df-prm 12430 |
| This theorem is referenced by: sqne2sq 12499 |
| Copyright terms: Public domain | W3C validator |