ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqpweven Unicode version

Theorem sqpweven 12497
Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
sqpweven  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Distinct variable groups:    x, y, z   
x, J, y    x, A, y, z    x, F, y, z
Allowed substitution hint:    J( z)

Proof of Theorem sqpweven
StepHypRef Expression
1 oddpwdc.j . . . . . . . 8  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
2 oddpwdc.f . . . . . . . 8  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 12496 . . . . . . 7  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
4 f1ocnv 5535 . . . . . . 7  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  `' F : NN -1-1-onto-> ( J  X.  NN0 ) )
5 f1of 5522 . . . . . . 7  |-  ( `' F : NN -1-1-onto-> ( J  X.  NN0 )  ->  `' F : NN
--> ( J  X.  NN0 ) )
63, 4, 5mp2b 8 . . . . . 6  |-  `' F : NN --> ( J  X.  NN0 )
76ffvelcdmi 5714 . . . . 5  |-  ( A  e.  NN  ->  ( `' F `  A )  e.  ( J  X.  NN0 ) )
8 xp2nd 6252 . . . . 5  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
97, 8syl 14 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
109nn0zd 9493 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e.  ZZ )
11 2nn 9198 . . . . 5  |-  2  e.  NN
1211a1i 9 . . . 4  |-  ( A  e.  NN  ->  2  e.  NN )
1312nnzd 9494 . . 3  |-  ( A  e.  NN  ->  2  e.  ZZ )
14 dvdsmul2 12125 . . 3  |-  ( ( ( 2nd `  ( `' F `  A ) )  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
1510, 13, 14syl2anc 411 . 2  |-  ( A  e.  NN  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
16 xp1st 6251 . . . . . . . . . 10  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 1st `  ( `' F `  A ) )  e.  J )
177, 16syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  J )
18 breq2 4048 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( 2 
||  z  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
1918notbid 669 . . . . . . . . . . 11  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2019, 1elrab2 2932 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  <->  ( ( 1st `  ( `' F `  A ) )  e.  NN  /\  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2120simplbi 274 . . . . . . . . 9  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  -> 
( 1st `  ( `' F `  A ) )  e.  NN )
2217, 21syl 14 . . . . . . . 8  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  NN )
2322nnsqcld 10839 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN )
2420simprbi 275 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
2517, 24syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
26 2prm 12449 . . . . . . . . . 10  |-  2  e.  Prime
2722nnzd 9494 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  ZZ )
28 euclemma 12468 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  ( 2 
||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) ) ) )
29 oridm 759 . . . . . . . . . . 11  |-  ( ( 2  ||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) )
3028, 29bitrdi 196 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3126, 27, 27, 30mp3an2i 1355 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3225, 31mtbird 675 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3322nncnd 9050 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  CC )
3433sqvald 10815 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  =  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3534breq2d 4056 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 )  <->  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) ) )
3632, 35mtbird 675 . . . . . . 7  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )
37 breq2 4048 . . . . . . . . 9  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
2  ||  z  <->  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3837notbid 669 . . . . . . . 8  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3938, 1elrab2 2932 . . . . . . 7  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  <->  ( (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN  /\  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
4023, 36, 39sylanbrc 417 . . . . . 6  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J )
4112nnnn0d 9348 . . . . . . 7  |-  ( A  e.  NN  ->  2  e.  NN0 )
429, 41nn0mulcld 9353 . . . . . 6  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )
43 opelxp 4705 . . . . . 6  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  <->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 ) )
4440, 42, 43sylanbrc 417 . . . . 5  |-  ( A  e.  NN  ->  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)
4512nncnd 9050 . . . . . . . . 9  |-  ( A  e.  NN  ->  2  e.  CC )
4645, 41, 9expmuld 10821 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )
4746oveq1d 5959 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4812, 42nnexpcld 10840 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  e.  NN )
4948, 23nnmulcld 9085 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )
50 oveq2 5952 . . . . . . . . 9  |-  ( x  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
( 2 ^ y
)  x.  x )  =  ( ( 2 ^ y )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
51 oveq2 5952 . . . . . . . . . 10  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
2 ^ y )  =  ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
5251oveq1d 5959 . . . . . . . . 9  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
( 2 ^ y
)  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5350, 52, 2ovmpog 6080 . . . . . . . 8  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0  /\  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )  ->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5440, 42, 49, 53syl3anc 1250 . . . . . . 7  |-  ( A  e.  NN  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
55 f1ocnvfv2 5847 . . . . . . . . . . . . 13  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  A  e.  NN )  ->  ( F `  ( `' F `  A ) )  =  A )
563, 55mpan 424 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  A )
57 1st2nd2 6261 . . . . . . . . . . . . . 14  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
587, 57syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
5958fveq2d 5580 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  ( F `
 <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
6056, 59eqtr3d 2240 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
61 df-ov 5947 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
6260, 61eqtr4di 2256 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  =  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) ) )
6312, 9nnexpcld 10840 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  NN )
6463, 22nnmulcld 9085 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )
65 oveq2 5952 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) ) )
66 oveq2 5952 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) )
6766oveq1d 5959 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6865, 67, 2ovmpog 6080 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( `' F `  A ) )  e.  J  /\  ( 2nd `  ( `' F `  A ) )  e.  NN0  /\  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )  -> 
( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6917, 9, 64, 68syl3anc 1250 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7062, 69eqtrd 2238 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7170oveq1d 5959 . . . . . . . 8  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 ) )
7263nncnd 9050 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  CC )
7372, 33sqmuld 10830 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7471, 73eqtrd 2238 . . . . . . 7  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7547, 54, 743eqtr4rd 2249 . . . . . 6  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 1st `  ( `' F `  A ) ) ^
2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
76 df-ov 5947 . . . . . 6  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
7775, 76eqtr2di 2255 . . . . 5  |-  ( A  e.  NN  ->  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 ) )
78 f1ocnvfv 5848 . . . . . 6  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
793, 78mpan 424 . . . . 5  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
8044, 77, 79sylc 62 . . . 4  |-  ( A  e.  NN  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )
8180fveq2d 5580 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
)
82 op2ndg 6237 . . . 4  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )  -> 
( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8340, 42, 82syl2anc 411 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )  =  (
( 2nd `  ( `' F `  A ) )  x.  2 ) )
8481, 83eqtrd 2238 . 2  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8515, 84breqtrrd 4072 1  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488   <.cop 3636   class class class wbr 4044    X. cxp 4673   `'ccnv 4674   -->wf 5267   -1-1-onto->wf1o 5270   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225    x. cmul 7930   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   ^cexp 10683    || cdvds 12098   Primecprime 12429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-1o 6502  df-2o 6503  df-er 6620  df-en 6828  df-sup 7086  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-prm 12430
This theorem is referenced by:  sqne2sq  12499
  Copyright terms: Public domain W3C validator