ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sqpweven Unicode version

Theorem sqpweven 11842
Description: The greatest power of two dividing the square of an integer is an even power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
sqpweven  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Distinct variable groups:    x, y, z   
x, J, y    x, A, y, z    x, F, y, z
Allowed substitution hint:    J( z)

Proof of Theorem sqpweven
StepHypRef Expression
1 oddpwdc.j . . . . . . . 8  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
2 oddpwdc.f . . . . . . . 8  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 11841 . . . . . . 7  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
4 f1ocnv 5373 . . . . . . 7  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  `' F : NN -1-1-onto-> ( J  X.  NN0 ) )
5 f1of 5360 . . . . . . 7  |-  ( `' F : NN -1-1-onto-> ( J  X.  NN0 )  ->  `' F : NN
--> ( J  X.  NN0 ) )
63, 4, 5mp2b 8 . . . . . 6  |-  `' F : NN --> ( J  X.  NN0 )
76ffvelrni 5547 . . . . 5  |-  ( A  e.  NN  ->  ( `' F `  A )  e.  ( J  X.  NN0 ) )
8 xp2nd 6057 . . . . 5  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
97, 8syl 14 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
109nn0zd 9164 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e.  ZZ )
11 2nn 8874 . . . . 5  |-  2  e.  NN
1211a1i 9 . . . 4  |-  ( A  e.  NN  ->  2  e.  NN )
1312nnzd 9165 . . 3  |-  ( A  e.  NN  ->  2  e.  ZZ )
14 dvdsmul2 11505 . . 3  |-  ( ( ( 2nd `  ( `' F `  A ) )  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
1510, 13, 14syl2anc 408 . 2  |-  ( A  e.  NN  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
16 xp1st 6056 . . . . . . . . . 10  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 1st `  ( `' F `  A ) )  e.  J )
177, 16syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  J )
18 breq2 3928 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( 2 
||  z  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
1918notbid 656 . . . . . . . . . . 11  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2019, 1elrab2 2838 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  <->  ( ( 1st `  ( `' F `  A ) )  e.  NN  /\  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2120simplbi 272 . . . . . . . . 9  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  -> 
( 1st `  ( `' F `  A ) )  e.  NN )
2217, 21syl 14 . . . . . . . 8  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  NN )
2322nnsqcld 10438 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN )
2420simprbi 273 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
2517, 24syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
26 2prm 11797 . . . . . . . . . 10  |-  2  e.  Prime
2722nnzd 9165 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  ZZ )
28 euclemma 11813 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  ( 2 
||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) ) ) )
29 oridm 746 . . . . . . . . . . 11  |-  ( ( 2  ||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) )
3028, 29syl6bb 195 . . . . . . . . . 10  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3126, 27, 27, 30mp3an2i 1320 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3225, 31mtbird 662 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3322nncnd 8727 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  CC )
3433sqvald 10414 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  =  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3534breq2d 3936 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 )  <->  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) ) )
3632, 35mtbird 662 . . . . . . 7  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )
37 breq2 3928 . . . . . . . . 9  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
2  ||  z  <->  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3837notbid 656 . . . . . . . 8  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
3938, 1elrab2 2838 . . . . . . 7  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  <->  ( (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN  /\  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
4023, 36, 39sylanbrc 413 . . . . . 6  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J )
4112nnnn0d 9023 . . . . . . 7  |-  ( A  e.  NN  ->  2  e.  NN0 )
429, 41nn0mulcld 9028 . . . . . 6  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )
43 opelxp 4564 . . . . . 6  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  <->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 ) )
4440, 42, 43sylanbrc 413 . . . . 5  |-  ( A  e.  NN  ->  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)
4512nncnd 8727 . . . . . . . . 9  |-  ( A  e.  NN  ->  2  e.  CC )
4645, 41, 9expmuld 10420 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )
4746oveq1d 5782 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4812, 42nnexpcld 10439 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  e.  NN )
4948, 23nnmulcld 8762 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )
50 oveq2 5775 . . . . . . . . 9  |-  ( x  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
( 2 ^ y
)  x.  x )  =  ( ( 2 ^ y )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
51 oveq2 5775 . . . . . . . . . 10  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
2 ^ y )  =  ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
5251oveq1d 5782 . . . . . . . . 9  |-  ( y  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  (
( 2 ^ y
)  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5350, 52, 2ovmpog 5898 . . . . . . . 8  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0  /\  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) )  e.  NN )  ->  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
5440, 42, 49, 53syl3anc 1216 . . . . . . 7  |-  ( A  e.  NN  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
55 f1ocnvfv2 5672 . . . . . . . . . . . . 13  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  A  e.  NN )  ->  ( F `  ( `' F `  A ) )  =  A )
563, 55mpan 420 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  A )
57 1st2nd2 6066 . . . . . . . . . . . . . 14  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
587, 57syl 14 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
5958fveq2d 5418 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  ( F `
 <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
6056, 59eqtr3d 2172 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  A  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
61 df-ov 5770 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
6260, 61syl6eqr 2188 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  =  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) ) )
6312, 9nnexpcld 10439 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  NN )
6463, 22nnmulcld 8762 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )
65 oveq2 5775 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) ) )
66 oveq2 5775 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) )
6766oveq1d 5782 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6865, 67, 2ovmpog 5898 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( `' F `  A ) )  e.  J  /\  ( 2nd `  ( `' F `  A ) )  e.  NN0  /\  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )  -> 
( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
6917, 9, 64, 68syl3anc 1216 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7062, 69eqtrd 2170 . . . . . . . . 9  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
7170oveq1d 5782 . . . . . . . 8  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 ) )
7263nncnd 8727 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  CC )
7372, 33sqmuld 10429 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7471, 73eqtrd 2170 . . . . . . 7  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
7547, 54, 743eqtr4rd 2181 . . . . . 6  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 1st `  ( `' F `  A ) ) ^
2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
76 df-ov 5770 . . . . . 6  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
7775, 76syl6req 2187 . . . . 5  |-  ( A  e.  NN  ->  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 ) )
78 f1ocnvfv 5673 . . . . . 6  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )
)  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
793, 78mpan 420 . . . . 5  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >.  e.  ( J  X.  NN0 )  ->  ( ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( A ^
2 )  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. ) )
8044, 77, 79sylc 62 . . . 4  |-  ( A  e.  NN  ->  ( `' F `  ( A ^ 2 ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )
8180fveq2d 5418 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )
)
82 op2ndg 6042 . . . 4  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )  -> 
( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) >. )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8340, 42, 82syl2anc 408 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( 2nd `  ( `' F `  A ) )  x.  2 )
>. )  =  (
( 2nd `  ( `' F `  A ) )  x.  2 ) )
8481, 83eqtrd 2170 . 2  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( A ^ 2 ) ) )  =  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
8515, 84breqtrrd 3951 1  |-  ( A  e.  NN  ->  2  ||  ( 2nd `  ( `' F `  ( A ^ 2 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   {crab 2418   <.cop 3525   class class class wbr 3924    X. cxp 4532   `'ccnv 4533   -->wf 5114   -1-1-onto->wf1o 5117   ` cfv 5118  (class class class)co 5767    e. cmpo 5769   1stc1st 6029   2ndc2nd 6030    x. cmul 7618   NNcn 8713   2c2 8764   NN0cn0 8970   ZZcz 9047   ^cexp 10285    || cdvds 11482   Primecprime 11777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-1o 6306  df-2o 6307  df-er 6422  df-en 6628  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625  df-prm 11778
This theorem is referenced by:  sqne2sq  11844
  Copyright terms: Public domain W3C validator