ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqsn Unicode version

Theorem preqsn 3776
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
preqsn.1  |-  A  e. 
_V
preqsn.2  |-  B  e. 
_V
preqsn.3  |-  C  e. 
_V
Assertion
Ref Expression
preqsn  |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )

Proof of Theorem preqsn
StepHypRef Expression
1 dfsn2 3607 . . 3  |-  { C }  =  { C ,  C }
21eqeq2i 2188 . 2  |-  ( { A ,  B }  =  { C }  <->  { A ,  B }  =  { C ,  C }
)
3 preqsn.1 . . . 4  |-  A  e. 
_V
4 preqsn.2 . . . 4  |-  B  e. 
_V
5 preqsn.3 . . . 4  |-  C  e. 
_V
63, 4, 5, 5preq12b 3771 . . 3  |-  ( { A ,  B }  =  { C ,  C } 
<->  ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C )
) )
7 oridm 757 . . . 4  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C ) )  <->  ( A  =  C  /\  B  =  C ) )
8 eqtr3 2197 . . . . . 6  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
9 simpr 110 . . . . . 6  |-  ( ( A  =  C  /\  B  =  C )  ->  B  =  C )
108, 9jca 306 . . . . 5  |-  ( ( A  =  C  /\  B  =  C )  ->  ( A  =  B  /\  B  =  C ) )
11 eqtr 2195 . . . . . 6  |-  ( ( A  =  B  /\  B  =  C )  ->  A  =  C )
12 simpr 110 . . . . . 6  |-  ( ( A  =  B  /\  B  =  C )  ->  B  =  C )
1311, 12jca 306 . . . . 5  |-  ( ( A  =  B  /\  B  =  C )  ->  ( A  =  C  /\  B  =  C ) )
1410, 13impbii 126 . . . 4  |-  ( ( A  =  C  /\  B  =  C )  <->  ( A  =  B  /\  B  =  C )
)
157, 14bitri 184 . . 3  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C ) )  <->  ( A  =  B  /\  B  =  C ) )
166, 15bitri 184 . 2  |-  ( { A ,  B }  =  { C ,  C } 
<->  ( A  =  B  /\  B  =  C ) )
172, 16bitri 184 1  |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353    e. wcel 2148   _Vcvv 2738   {csn 3593   {cpr 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600
This theorem is referenced by:  opeqsn  4253  relop  4778
  Copyright terms: Public domain W3C validator