| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqsn | Unicode version | ||
| Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.) |
| Ref | Expression |
|---|---|
| preqsn.1 |
|
| preqsn.2 |
|
| preqsn.3 |
|
| Ref | Expression |
|---|---|
| preqsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsn2 3637 |
. . 3
| |
| 2 | 1 | eqeq2i 2207 |
. 2
|
| 3 | preqsn.1 |
. . . 4
| |
| 4 | preqsn.2 |
. . . 4
| |
| 5 | preqsn.3 |
. . . 4
| |
| 6 | 3, 4, 5, 5 | preq12b 3801 |
. . 3
|
| 7 | oridm 758 |
. . . 4
| |
| 8 | eqtr3 2216 |
. . . . . 6
| |
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 8, 9 | jca 306 |
. . . . 5
|
| 11 | eqtr 2214 |
. . . . . 6
| |
| 12 | simpr 110 |
. . . . . 6
| |
| 13 | 11, 12 | jca 306 |
. . . . 5
|
| 14 | 10, 13 | impbii 126 |
. . . 4
|
| 15 | 7, 14 | bitri 184 |
. . 3
|
| 16 | 6, 15 | bitri 184 |
. 2
|
| 17 | 2, 16 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 |
| This theorem is referenced by: opeqsn 4286 relop 4817 |
| Copyright terms: Public domain | W3C validator |