ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqsn Unicode version

Theorem preqsn 3816
Description: Equivalence for a pair equal to a singleton. (Contributed by NM, 3-Jun-2008.)
Hypotheses
Ref Expression
preqsn.1  |-  A  e. 
_V
preqsn.2  |-  B  e. 
_V
preqsn.3  |-  C  e. 
_V
Assertion
Ref Expression
preqsn  |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )

Proof of Theorem preqsn
StepHypRef Expression
1 dfsn2 3647 . . 3  |-  { C }  =  { C ,  C }
21eqeq2i 2216 . 2  |-  ( { A ,  B }  =  { C }  <->  { A ,  B }  =  { C ,  C }
)
3 preqsn.1 . . . 4  |-  A  e. 
_V
4 preqsn.2 . . . 4  |-  B  e. 
_V
5 preqsn.3 . . . 4  |-  C  e. 
_V
63, 4, 5, 5preq12b 3811 . . 3  |-  ( { A ,  B }  =  { C ,  C } 
<->  ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C )
) )
7 oridm 759 . . . 4  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C ) )  <->  ( A  =  C  /\  B  =  C ) )
8 eqtr3 2225 . . . . . 6  |-  ( ( A  =  C  /\  B  =  C )  ->  A  =  B )
9 simpr 110 . . . . . 6  |-  ( ( A  =  C  /\  B  =  C )  ->  B  =  C )
108, 9jca 306 . . . . 5  |-  ( ( A  =  C  /\  B  =  C )  ->  ( A  =  B  /\  B  =  C ) )
11 eqtr 2223 . . . . . 6  |-  ( ( A  =  B  /\  B  =  C )  ->  A  =  C )
12 simpr 110 . . . . . 6  |-  ( ( A  =  B  /\  B  =  C )  ->  B  =  C )
1311, 12jca 306 . . . . 5  |-  ( ( A  =  B  /\  B  =  C )  ->  ( A  =  C  /\  B  =  C ) )
1410, 13impbii 126 . . . 4  |-  ( ( A  =  C  /\  B  =  C )  <->  ( A  =  B  /\  B  =  C )
)
157, 14bitri 184 . . 3  |-  ( ( ( A  =  C  /\  B  =  C )  \/  ( A  =  C  /\  B  =  C ) )  <->  ( A  =  B  /\  B  =  C ) )
166, 15bitri 184 . 2  |-  ( { A ,  B }  =  { C ,  C } 
<->  ( A  =  B  /\  B  =  C ) )
172, 16bitri 184 1  |-  ( { A ,  B }  =  { C }  <->  ( A  =  B  /\  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640
This theorem is referenced by:  opeqsn  4298  relop  4829  funopsn  5764
  Copyright terms: Public domain W3C validator