ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapti Unicode version

Theorem reapti 8652
Description: Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8695. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
reapti  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <->  -.  A #  B ) )

Proof of Theorem reapti
StepHypRef Expression
1 ltnr 8149 . . . . 5  |-  ( A  e.  RR  ->  -.  A  <  A )
21adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  -.  A  <  A
)
3 oridm 759 . . . . . 6  |-  ( ( A  <  A  \/  A  <  A )  <->  A  <  A )
4 breq2 4048 . . . . . . 7  |-  ( A  =  B  ->  ( A  <  A  <->  A  <  B ) )
5 breq1 4047 . . . . . . 7  |-  ( A  =  B  ->  ( A  <  A  <->  B  <  A ) )
64, 5orbi12d 795 . . . . . 6  |-  ( A  =  B  ->  (
( A  <  A  \/  A  <  A )  <-> 
( A  <  B  \/  B  <  A ) ) )
73, 6bitr3id 194 . . . . 5  |-  ( A  =  B  ->  ( A  <  A  <->  ( A  <  B  \/  B  < 
A ) ) )
87notbid 669 . . . 4  |-  ( A  =  B  ->  ( -.  A  <  A  <->  -.  ( A  <  B  \/  B  <  A ) ) )
92, 8syl5ibcom 155 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  -.  ( A  <  B  \/  B  < 
A ) ) )
10 reapval 8649 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A #  B  <->  ( A  < 
B  \/  B  < 
A ) ) )
1110notbid 669 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  A #  B  <->  -.  ( A  <  B  \/  B  <  A ) ) )
129, 11sylibrd 169 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  ->  -.  A #  B )
)
13 axapti 8143 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  -.  ( A  <  B  \/  B  <  A ) )  ->  A  =  B )
14133expia 1208 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  ( A  <  B  \/  B  <  A )  ->  A  =  B ) )
1511, 14sylbid 150 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -.  A #  B  ->  A  =  B )
)
1612, 15impbid 129 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =  B  <->  -.  A #  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044   RRcr 7924    < clt 8107   # creap 8647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-pre-ltirr 8037  ax-pre-apti 8040
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-reap 8648
This theorem is referenced by:  rimul  8658  apreap  8660  apti  8695
  Copyright terms: Public domain W3C validator