ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapirr Unicode version

Theorem reapirr 8536
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8564 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
reapirr  |-  ( A  e.  RR  ->  -.  A #  A )

Proof of Theorem reapirr
StepHypRef Expression
1 ltnr 8036 . 2  |-  ( A  e.  RR  ->  -.  A  <  A )
2 reapval 8535 . . . 4  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A #  A  <->  ( A  < 
A  \/  A  < 
A ) ) )
32anidms 397 . . 3  |-  ( A  e.  RR  ->  ( A #  A 
<->  ( A  <  A  \/  A  <  A ) ) )
4 oridm 757 . . 3  |-  ( ( A  <  A  \/  A  <  A )  <->  A  <  A )
53, 4bitrdi 196 . 2  |-  ( A  e.  RR  ->  ( A #  A 
<->  A  <  A ) )
61, 5mtbird 673 1  |-  ( A  e.  RR  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 708    e. wcel 2148   class class class wbr 4005   RRcr 7812    < clt 7994   # creap 8533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltirr 7925
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-reap 8534
This theorem is referenced by:  apirr  8564
  Copyright terms: Public domain W3C validator