ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapirr Unicode version

Theorem reapirr 8598
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8626 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
reapirr  |-  ( A  e.  RR  ->  -.  A #  A )

Proof of Theorem reapirr
StepHypRef Expression
1 ltnr 8098 . 2  |-  ( A  e.  RR  ->  -.  A  <  A )
2 reapval 8597 . . . 4  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A #  A  <->  ( A  < 
A  \/  A  < 
A ) ) )
32anidms 397 . . 3  |-  ( A  e.  RR  ->  ( A #  A 
<->  ( A  <  A  \/  A  <  A ) ) )
4 oridm 758 . . 3  |-  ( ( A  <  A  \/  A  <  A )  <->  A  <  A )
53, 4bitrdi 196 . 2  |-  ( A  e.  RR  ->  ( A #  A 
<->  A  <  A ) )
61, 5mtbird 674 1  |-  ( A  e.  RR  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709    e. wcel 2164   class class class wbr 4030   RRcr 7873    < clt 8056   # creap 8595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-pre-ltirr 7986
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-reap 8596
This theorem is referenced by:  apirr  8626
  Copyright terms: Public domain W3C validator