ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapirr Unicode version

Theorem reapirr 8724
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8752 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
reapirr  |-  ( A  e.  RR  ->  -.  A #  A )

Proof of Theorem reapirr
StepHypRef Expression
1 ltnr 8223 . 2  |-  ( A  e.  RR  ->  -.  A  <  A )
2 reapval 8723 . . . 4  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A #  A  <->  ( A  < 
A  \/  A  < 
A ) ) )
32anidms 397 . . 3  |-  ( A  e.  RR  ->  ( A #  A 
<->  ( A  <  A  \/  A  <  A ) ) )
4 oridm 762 . . 3  |-  ( ( A  <  A  \/  A  <  A )  <->  A  <  A )
53, 4bitrdi 196 . 2  |-  ( A  e.  RR  ->  ( A #  A 
<->  A  <  A ) )
61, 5mtbird 677 1  |-  ( A  e.  RR  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 713    e. wcel 2200   class class class wbr 4083   RRcr 7998    < clt 8181   # creap 8721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-pre-ltirr 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-reap 8722
This theorem is referenced by:  apirr  8752
  Copyright terms: Public domain W3C validator