ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapirr Unicode version

Theorem reapirr 8685
Description: Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8713 instead. (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
reapirr  |-  ( A  e.  RR  ->  -.  A #  A )

Proof of Theorem reapirr
StepHypRef Expression
1 ltnr 8184 . 2  |-  ( A  e.  RR  ->  -.  A  <  A )
2 reapval 8684 . . . 4  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A #  A  <->  ( A  < 
A  \/  A  < 
A ) ) )
32anidms 397 . . 3  |-  ( A  e.  RR  ->  ( A #  A 
<->  ( A  <  A  \/  A  <  A ) ) )
4 oridm 759 . . 3  |-  ( ( A  <  A  \/  A  <  A )  <->  A  <  A )
53, 4bitrdi 196 . 2  |-  ( A  e.  RR  ->  ( A #  A 
<->  A  <  A ) )
61, 5mtbird 675 1  |-  ( A  e.  RR  ->  -.  A #  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710    e. wcel 2178   class class class wbr 4059   RRcr 7959    < clt 8142   # creap 8682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltirr 8072
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-reap 8683
This theorem is referenced by:  apirr  8713
  Copyright terms: Public domain W3C validator