ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqpwodd Unicode version

Theorem 2sqpwodd 12369
Description: The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
2sqpwodd  |-  ( A  e.  NN  ->  -.  2  ||  ( 2nd `  ( `' F `  ( 2  x.  ( A ^
2 ) ) ) ) )
Distinct variable groups:    x, y, z   
x, J, y    x, A, y, z    x, F, y, z
Allowed substitution hint:    J( z)

Proof of Theorem 2sqpwodd
StepHypRef Expression
1 oddpwdc.j . . . . . . . . 9  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
2 oddpwdc.f . . . . . . . . 9  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 12367 . . . . . . . 8  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
4 f1ocnv 5520 . . . . . . . 8  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  `' F : NN -1-1-onto-> ( J  X.  NN0 ) )
5 f1of 5507 . . . . . . . 8  |-  ( `' F : NN -1-1-onto-> ( J  X.  NN0 )  ->  `' F : NN
--> ( J  X.  NN0 ) )
63, 4, 5mp2b 8 . . . . . . 7  |-  `' F : NN --> ( J  X.  NN0 )
76ffvelcdmi 5699 . . . . . 6  |-  ( A  e.  NN  ->  ( `' F `  A )  e.  ( J  X.  NN0 ) )
8 xp2nd 6233 . . . . . 6  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
97, 8syl 14 . . . . 5  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
109nn0zd 9463 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e.  ZZ )
11 2nn 9169 . . . . . 6  |-  2  e.  NN
1211a1i 9 . . . . 5  |-  ( A  e.  NN  ->  2  e.  NN )
1312nnzd 9464 . . . 4  |-  ( A  e.  NN  ->  2  e.  ZZ )
1410, 13zmulcld 9471 . . 3  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ )
15 dvdsmul2 11996 . . . 4  |-  ( ( ( 2nd `  ( `' F `  A ) )  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
1610, 13, 15syl2anc 411 . . 3  |-  ( A  e.  NN  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
17 oddp1even 12058 . . . . 5  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ  ->  ( -.  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  <->  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
1817biimprd 158 . . . 4  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ  ->  (
2  ||  ( (
( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  ->  -.  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
1918con2d 625 . . 3  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ  ->  (
2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  -.  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
2014, 16, 19sylc 62 . 2  |-  ( A  e.  NN  ->  -.  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
21 xp1st 6232 . . . . . . . . . . 11  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 1st `  ( `' F `  A ) )  e.  J )
227, 21syl 14 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  J )
23 breq2 4038 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( 2 
||  z  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2423notbid 668 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2524, 1elrab2 2923 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  <->  ( ( 1st `  ( `' F `  A ) )  e.  NN  /\  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2625simplbi 274 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  -> 
( 1st `  ( `' F `  A ) )  e.  NN )
2722, 26syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  NN )
2827nnsqcld 10803 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN )
2925simprbi 275 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
3022, 29syl 14 . . . . . . . . . 10  |-  ( A  e.  NN  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
31 2prm 12320 . . . . . . . . . . 11  |-  2  e.  Prime
3227nnzd 9464 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  ZZ )
33 euclemma 12339 . . . . . . . . . . . 12  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  ( 2 
||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) ) ) )
34 oridm 758 . . . . . . . . . . . 12  |-  ( ( 2  ||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) )
3533, 34bitrdi 196 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3631, 32, 32, 35mp3an2i 1353 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3730, 36mtbird 674 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3827nncnd 9021 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  CC )
3938sqvald 10779 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  =  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
4039breq2d 4046 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 )  <->  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) ) )
4137, 40mtbird 674 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )
42 breq2 4038 . . . . . . . . . 10  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
2  ||  z  <->  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4342notbid 668 . . . . . . . . 9  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4443, 1elrab2 2923 . . . . . . . 8  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  <->  ( (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN  /\  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
4528, 41, 44sylanbrc 417 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J )
4612nnnn0d 9319 . . . . . . . . 9  |-  ( A  e.  NN  ->  2  e.  NN0 )
479, 46nn0mulcld 9324 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )
48 peano2nn0 9306 . . . . . . . 8  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0  ->  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0 )
4947, 48syl 14 . . . . . . 7  |-  ( A  e.  NN  ->  (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0 )
50 opelxp 4694 . . . . . . 7  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 ) 
<->  ( ( ( 1st `  ( `' F `  A ) ) ^
2 )  e.  J  /\  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e.  NN0 )
)
5145, 49, 50sylanbrc 417 . . . . . 6  |-  ( A  e.  NN  ->  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 ) )
5212nncnd 9021 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  2  e.  CC )
5352, 47expp1d 10783 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  2 ) )
5452, 47expcld 10782 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  e.  CC )
5554, 52mulcomd 8065 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) ) ) )
5652, 46, 9expmuld 10785 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )
5756oveq2d 5941 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )  =  ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) ) )
5853, 55, 573eqtrd 2233 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) ) )
5958oveq1d 5940 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2 ^ (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  =  ( ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )  x.  (
( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
6012, 49nnexpcld 10804 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  e.  NN )
6160, 28nnmulcld 9056 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 2 ^ (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  e.  NN )
62 oveq2 5933 . . . . . . . . . 10  |-  ( x  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
( 2 ^ y
)  x.  x )  =  ( ( 2 ^ y )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
63 oveq2 5933 . . . . . . . . . . 11  |-  ( y  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  -> 
( 2 ^ y
)  =  ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
6463oveq1d 5940 . . . . . . . . . 10  |-  ( y  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  -> 
( ( 2 ^ y )  x.  (
( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
6562, 64, 2ovmpog 6061 . . . . . . . . 9  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0  /\  ( (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  e.  NN )  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
6645, 49, 61, 65syl3anc 1249 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
67 f1ocnvfv2 5828 . . . . . . . . . . . . . . . 16  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  A  e.  NN )  ->  ( F `  ( `' F `  A ) )  =  A )
683, 67mpan 424 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  A )
69 1st2nd2 6242 . . . . . . . . . . . . . . . . 17  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
707, 69syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  NN  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
7170fveq2d 5565 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  ( F `
 <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
7268, 71eqtr3d 2231 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
73 df-ov 5928 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
7472, 73eqtr4di 2247 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  A  =  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) ) )
7512, 9nnexpcld 10804 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  NN )
7675, 27nnmulcld 9056 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )
77 oveq2 5933 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1st `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) ) )
78 oveq2 5933 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) )
7978oveq1d 5940 . . . . . . . . . . . . . . 15  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8077, 79, 2ovmpog 6061 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( `' F `  A ) )  e.  J  /\  ( 2nd `  ( `' F `  A ) )  e.  NN0  /\  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )  -> 
( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8122, 9, 76, 80syl3anc 1249 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8274, 81eqtrd 2229 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8382oveq1d 5940 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 ) )
8475nncnd 9021 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  CC )
8584, 38sqmuld 10794 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
8683, 85eqtrd 2229 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
8786oveq2d 5941 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  x.  ( A ^ 2 ) )  =  ( 2  x.  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) ) )
8856, 54eqeltrrd 2274 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  e.  CC )
8928nncnd 9021 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  CC )
9052, 88, 89mulassd 8067 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 2  x.  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  =  ( 2  x.  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) ) )
9187, 90eqtr4d 2232 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2  x.  ( A ^ 2 ) )  =  ( ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )  x.  (
( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
9259, 66, 913eqtr4rd 2240 . . . . . . 7  |-  ( A  e.  NN  ->  (
2  x.  ( A ^ 2 ) )  =  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
93 df-ov 5928 . . . . . . 7  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)
9492, 93eqtr2di 2246 . . . . . 6  |-  ( A  e.  NN  ->  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( 2  x.  ( A ^
2 ) ) )
95 f1ocnvfv 5829 . . . . . . 7  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 ) )  ->  (
( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( 2  x.  ( A ^
2 ) )  -> 
( `' F `  ( 2  x.  ( A ^ 2 ) ) )  =  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
) )
963, 95mpan 424 . . . . . 6  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 )  ->  ( ( F `
 <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( 2  x.  ( A ^
2 ) )  -> 
( `' F `  ( 2  x.  ( A ^ 2 ) ) )  =  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
) )
9751, 94, 96sylc 62 . . . . 5  |-  ( A  e.  NN  ->  ( `' F `  ( 2  x.  ( A ^
2 ) ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)
9897fveq2d 5565 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( 2  x.  ( A ^ 2 ) ) ) )  =  ( 2nd `  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
) )
99 op2ndg 6218 . . . . 5  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0 )  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
10045, 49, 99syl2anc 411 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
10198, 100eqtrd 2229 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( 2  x.  ( A ^ 2 ) ) ) )  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
102101breq2d 4046 . 2  |-  ( A  e.  NN  ->  (
2  ||  ( 2nd `  ( `' F `  ( 2  x.  ( A ^ 2 ) ) ) )  <->  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
10320, 102mtbird 674 1  |-  ( A  e.  NN  ->  -.  2  ||  ( 2nd `  ( `' F `  ( 2  x.  ( A ^
2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   {crab 2479   <.cop 3626   class class class wbr 4034    X. cxp 4662   `'ccnv 4663   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901   NNcn 9007   2c2 9058   NN0cn0 9266   ZZcz 9343   ^cexp 10647    || cdvds 11969   Primecprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301
This theorem is referenced by:  sqne2sq  12370
  Copyright terms: Public domain W3C validator