ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqpwodd Unicode version

Theorem 2sqpwodd 12143
Description: The greatest power of two dividing twice the square of an integer is an odd power of two. (Contributed by Jim Kingdon, 17-Nov-2021.)
Hypotheses
Ref Expression
oddpwdc.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
oddpwdc.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
Assertion
Ref Expression
2sqpwodd  |-  ( A  e.  NN  ->  -.  2  ||  ( 2nd `  ( `' F `  ( 2  x.  ( A ^
2 ) ) ) ) )
Distinct variable groups:    x, y, z   
x, J, y    x, A, y, z    x, F, y, z
Allowed substitution hint:    J( z)

Proof of Theorem 2sqpwodd
StepHypRef Expression
1 oddpwdc.j . . . . . . . . 9  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
2 oddpwdc.f . . . . . . . . 9  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
31, 2oddpwdc 12141 . . . . . . . 8  |-  F :
( J  X.  NN0 )
-1-1-onto-> NN
4 f1ocnv 5466 . . . . . . . 8  |-  ( F : ( J  X.  NN0 ) -1-1-onto-> NN  ->  `' F : NN -1-1-onto-> ( J  X.  NN0 ) )
5 f1of 5453 . . . . . . . 8  |-  ( `' F : NN -1-1-onto-> ( J  X.  NN0 )  ->  `' F : NN
--> ( J  X.  NN0 ) )
63, 4, 5mp2b 8 . . . . . . 7  |-  `' F : NN --> ( J  X.  NN0 )
76ffvelcdmi 5642 . . . . . 6  |-  ( A  e.  NN  ->  ( `' F `  A )  e.  ( J  X.  NN0 ) )
8 xp2nd 6157 . . . . . 6  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
97, 8syl 14 . . . . 5  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e. 
NN0 )
109nn0zd 9346 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  A ) )  e.  ZZ )
11 2nn 9053 . . . . . 6  |-  2  e.  NN
1211a1i 9 . . . . 5  |-  ( A  e.  NN  ->  2  e.  NN )
1312nnzd 9347 . . . 4  |-  ( A  e.  NN  ->  2  e.  ZZ )
1410, 13zmulcld 9354 . . 3  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ )
15 dvdsmul2 11789 . . . 4  |-  ( ( ( 2nd `  ( `' F `  A ) )  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
1610, 13, 15syl2anc 411 . . 3  |-  ( A  e.  NN  ->  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )
17 oddp1even 11848 . . . . 5  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ  ->  ( -.  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  <->  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
1817biimprd 158 . . . 4  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ  ->  (
2  ||  ( (
( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  ->  -.  2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )
1918con2d 624 . . 3  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  ZZ  ->  (
2  ||  ( ( 2nd `  ( `' F `  A ) )  x.  2 )  ->  -.  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
2014, 16, 19sylc 62 . 2  |-  ( A  e.  NN  ->  -.  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
21 xp1st 6156 . . . . . . . . . . 11  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( 1st `  ( `' F `  A ) )  e.  J )
227, 21syl 14 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  J )
23 breq2 4002 . . . . . . . . . . . . 13  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( 2 
||  z  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2423notbid 667 . . . . . . . . . . . 12  |-  ( z  =  ( 1st `  ( `' F `  A ) )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2524, 1elrab2 2894 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  <->  ( ( 1st `  ( `' F `  A ) )  e.  NN  /\  -.  2  ||  ( 1st `  ( `' F `  A ) ) ) )
2625simplbi 274 . . . . . . . . . 10  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  -> 
( 1st `  ( `' F `  A ) )  e.  NN )
2722, 26syl 14 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  NN )
2827nnsqcld 10644 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN )
2925simprbi 275 . . . . . . . . . . 11  |-  ( ( 1st `  ( `' F `  A ) )  e.  J  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
3022, 29syl 14 . . . . . . . . . 10  |-  ( A  e.  NN  ->  -.  2  ||  ( 1st `  ( `' F `  A ) ) )
31 2prm 12094 . . . . . . . . . . 11  |-  2  e.  Prime
3227nnzd 9347 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  ZZ )
33 euclemma 12113 . . . . . . . . . . . 12  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  ( 2 
||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) ) ) )
34 oridm 757 . . . . . . . . . . . 12  |-  ( ( 2  ||  ( 1st `  ( `' F `  A ) )  \/  2  ||  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) )
3533, 34bitrdi 196 . . . . . . . . . . 11  |-  ( ( 2  e.  Prime  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ  /\  ( 1st `  ( `' F `  A ) )  e.  ZZ )  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3631, 32, 32, 35mp3an2i 1342 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) )  <->  2  ||  ( 1st `  ( `' F `  A ) ) ) )
3730, 36mtbird 673 . . . . . . . . 9  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
3827nncnd 8906 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( 1st `  ( `' F `  A ) )  e.  CC )
3938sqvald 10620 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  =  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
4039breq2d 4010 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 )  <->  2  ||  ( ( 1st `  ( `' F `  A ) )  x.  ( 1st `  ( `' F `  A ) ) ) ) )
4137, 40mtbird 673 . . . . . . . 8  |-  ( A  e.  NN  ->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )
42 breq2 4002 . . . . . . . . . 10  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
2  ||  z  <->  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4342notbid 667 . . . . . . . . 9  |-  ( z  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  ( -.  2  ||  z  <->  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
4443, 1elrab2 2894 . . . . . . . 8  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  <->  ( (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  NN  /\  -.  2  ||  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
4528, 41, 44sylanbrc 417 . . . . . . 7  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J )
4612nnnn0d 9202 . . . . . . . . 9  |-  ( A  e.  NN  ->  2  e.  NN0 )
479, 46nn0mulcld 9207 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0 )
48 peano2nn0 9189 . . . . . . . 8  |-  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  e.  NN0  ->  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0 )
4947, 48syl 14 . . . . . . 7  |-  ( A  e.  NN  ->  (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0 )
50 opelxp 4650 . . . . . . 7  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 ) 
<->  ( ( ( 1st `  ( `' F `  A ) ) ^
2 )  e.  J  /\  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e.  NN0 )
)
5145, 49, 50sylanbrc 417 . . . . . 6  |-  ( A  e.  NN  ->  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 ) )
5212nncnd 8906 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  2  e.  CC )
5352, 47expp1d 10624 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  2 ) )
5452, 47expcld 10623 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  e.  CC )
5554, 52mulcomd 7953 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) )  x.  2 )  =  ( 2  x.  ( 2 ^ (
( 2nd `  ( `' F `  A ) )  x.  2 ) ) ) )
5652, 46, 9expmuld 10626 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )
5756oveq2d 5881 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2  x.  ( 2 ^ ( ( 2nd `  ( `' F `  A ) )  x.  2 ) ) )  =  ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) ) )
5853, 55, 573eqtrd 2212 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) ) )
5958oveq1d 5880 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( 2 ^ (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  =  ( ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )  x.  (
( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
6012, 49nnexpcld 10645 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  e.  NN )
6160, 28nnmulcld 8941 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 2 ^ (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  e.  NN )
62 oveq2 5873 . . . . . . . . . 10  |-  ( x  =  ( ( 1st `  ( `' F `  A ) ) ^
2 )  ->  (
( 2 ^ y
)  x.  x )  =  ( ( 2 ^ y )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
63 oveq2 5873 . . . . . . . . . . 11  |-  ( y  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  -> 
( 2 ^ y
)  =  ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
6463oveq1d 5880 . . . . . . . . . 10  |-  ( y  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  -> 
( ( 2 ^ y )  x.  (
( 1st `  ( `' F `  A ) ) ^ 2 ) )  =  ( ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
6562, 64, 2ovmpog 5999 . . . . . . . . 9  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0  /\  ( (
2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  e.  NN )  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
6645, 49, 61, 65syl3anc 1238 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( ( 2 ^ ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) ) )
67 f1ocnvfv2 5769 . . . . . . . . . . . . . . . 16  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  A  e.  NN )  ->  ( F `  ( `' F `  A ) )  =  A )
683, 67mpan 424 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  A )
69 1st2nd2 6166 . . . . . . . . . . . . . . . . 17  |-  ( ( `' F `  A )  e.  ( J  X.  NN0 )  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
707, 69syl 14 . . . . . . . . . . . . . . . 16  |-  ( A  e.  NN  ->  ( `' F `  A )  =  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
7170fveq2d 5511 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  ( F `  ( `' F `  A )
)  =  ( F `
 <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
7268, 71eqtr3d 2210 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
) )
73 df-ov 5868 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( F `  <. ( 1st `  ( `' F `  A ) ) ,  ( 2nd `  ( `' F `  A ) ) >.
)
7472, 73eqtr4di 2226 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  A  =  ( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) ) )
7512, 9nnexpcld 10645 . . . . . . . . . . . . . . 15  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  NN )
7675, 27nnmulcld 8941 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )
77 oveq2 5873 . . . . . . . . . . . . . . 15  |-  ( x  =  ( 1st `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  x )  =  ( ( 2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) ) )
78 oveq2 5873 . . . . . . . . . . . . . . . 16  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( 2 ^ y )  =  ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) )
7978oveq1d 5880 . . . . . . . . . . . . . . 15  |-  ( y  =  ( 2nd `  ( `' F `  A ) )  ->  ( (
2 ^ y )  x.  ( 1st `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8077, 79, 2ovmpog 5999 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( `' F `  A ) )  e.  J  /\  ( 2nd `  ( `' F `  A ) )  e.  NN0  /\  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) )  e.  NN )  -> 
( ( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8122, 9, 76, 80syl3anc 1238 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) F ( 2nd `  ( `' F `  A ) ) )  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8274, 81eqtrd 2208 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  =  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) )
8382oveq1d 5880 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 ) )
8475nncnd 8906 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  (
2 ^ ( 2nd `  ( `' F `  A ) ) )  e.  CC )
8584, 38sqmuld 10635 . . . . . . . . . . 11  |-  ( A  e.  NN  ->  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) )  x.  ( 1st `  ( `' F `  A ) ) ) ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
8683, 85eqtrd 2208 . . . . . . . . . 10  |-  ( A  e.  NN  ->  ( A ^ 2 )  =  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
8786oveq2d 5881 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
2  x.  ( A ^ 2 ) )  =  ( 2  x.  ( ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) ) )
8856, 54eqeltrrd 2253 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  e.  CC )
8928nncnd 8906 . . . . . . . . . 10  |-  ( A  e.  NN  ->  (
( 1st `  ( `' F `  A ) ) ^ 2 )  e.  CC )
9052, 88, 89mulassd 7955 . . . . . . . . 9  |-  ( A  e.  NN  ->  (
( 2  x.  (
( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )  x.  ( ( 1st `  ( `' F `  A ) ) ^
2 ) )  =  ( 2  x.  (
( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 )  x.  ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ) ) )
9187, 90eqtr4d 2211 . . . . . . . 8  |-  ( A  e.  NN  ->  (
2  x.  ( A ^ 2 ) )  =  ( ( 2  x.  ( ( 2 ^ ( 2nd `  ( `' F `  A ) ) ) ^ 2 ) )  x.  (
( 1st `  ( `' F `  A ) ) ^ 2 ) ) )
9259, 66, 913eqtr4rd 2219 . . . . . . 7  |-  ( A  e.  NN  ->  (
2  x.  ( A ^ 2 ) )  =  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
93 df-ov 5868 . . . . . . 7  |-  ( ( ( 1st `  ( `' F `  A ) ) ^ 2 ) F ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )  =  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)
9492, 93eqtr2di 2225 . . . . . 6  |-  ( A  e.  NN  ->  ( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( 2  x.  ( A ^
2 ) ) )
95 f1ocnvfv 5770 . . . . . . 7  |-  ( ( F : ( J  X.  NN0 ) -1-1-onto-> NN  /\  <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 ) )  ->  (
( F `  <. ( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( 2  x.  ( A ^
2 ) )  -> 
( `' F `  ( 2  x.  ( A ^ 2 ) ) )  =  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
) )
963, 95mpan 424 . . . . . 6  |-  ( <.
( ( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.  e.  ( J  X.  NN0 )  ->  ( ( F `
 <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( 2  x.  ( A ^
2 ) )  -> 
( `' F `  ( 2  x.  ( A ^ 2 ) ) )  =  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
) )
9751, 94, 96sylc 62 . . . . 5  |-  ( A  e.  NN  ->  ( `' F `  ( 2  x.  ( A ^
2 ) ) )  =  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)
9897fveq2d 5511 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( 2  x.  ( A ^ 2 ) ) ) )  =  ( 2nd `  <. (
( 1st `  ( `' F `  A ) ) ^ 2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
) )
99 op2ndg 6142 . . . . 5  |-  ( ( ( ( 1st `  ( `' F `  A ) ) ^ 2 )  e.  J  /\  (
( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 )  e. 
NN0 )  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
10045, 49, 99syl2anc 411 . . . 4  |-  ( A  e.  NN  ->  ( 2nd `  <. ( ( 1st `  ( `' F `  A ) ) ^
2 ) ,  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) >.
)  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
10198, 100eqtrd 2208 . . 3  |-  ( A  e.  NN  ->  ( 2nd `  ( `' F `  ( 2  x.  ( A ^ 2 ) ) ) )  =  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) )
102101breq2d 4010 . 2  |-  ( A  e.  NN  ->  (
2  ||  ( 2nd `  ( `' F `  ( 2  x.  ( A ^ 2 ) ) ) )  <->  2  ||  ( ( ( 2nd `  ( `' F `  A ) )  x.  2 )  +  1 ) ) )
10320, 102mtbird 673 1  |-  ( A  e.  NN  ->  -.  2  ||  ( 2nd `  ( `' F `  ( 2  x.  ( A ^
2 ) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2146   {crab 2457   <.cop 3592   class class class wbr 3998    X. cxp 4618   `'ccnv 4619   -->wf 5204   -1-1-onto->wf1o 5207   ` cfv 5208  (class class class)co 5865    e. cmpo 5867   1stc1st 6129   2ndc2nd 6130   CCcc 7784   1c1 7787    + caddc 7789    x. cmul 7791   NNcn 8892   2c2 8943   NN0cn0 9149   ZZcz 9226   ^cexp 10489    || cdvds 11762   Primecprime 12074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904  ax-arch 7905  ax-caucvg 7906
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-ilim 4363  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-frec 6382  df-1o 6407  df-2o 6408  df-er 6525  df-en 6731  df-sup 6973  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8603  df-inn 8893  df-2 8951  df-3 8952  df-4 8953  df-n0 9150  df-z 9227  df-uz 9502  df-q 9593  df-rp 9625  df-fz 9980  df-fzo 10113  df-fl 10240  df-mod 10293  df-seqfrec 10416  df-exp 10490  df-cj 10819  df-re 10820  df-im 10821  df-rsqrt 10975  df-abs 10976  df-dvds 11763  df-gcd 11911  df-prm 12075
This theorem is referenced by:  sqne2sq  12144
  Copyright terms: Public domain W3C validator