ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext Unicode version

Theorem absext 11228
Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  A #  B
) )

Proof of Theorem absext
StepHypRef Expression
1 absval2 11222 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) )
2 absval2 11222 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  =  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) ) )
31, 2breqan12d 4049 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  <->  ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) #  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) ) ) )
4 simpl 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
54recld 11103 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65resqcld 10791 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A ) ^ 2 )  e.  RR )
74imcld 11104 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
87resqcld 10791 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A ) ^ 2 )  e.  RR )
96, 8readdcld 8056 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 )  +  ( ( Im `  A
) ^ 2 ) )  e.  RR )
105sqge0d 10792 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Re `  A ) ^ 2 ) )
117sqge0d 10792 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Im `  A ) ^ 2 ) )
126, 8, 10, 11addge0d 8549 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
( Re `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )
13 simpr 110 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1413recld 11103 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1514resqcld 10791 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B ) ^ 2 )  e.  RR )
1613imcld 11104 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1716resqcld 10791 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  B ) ^ 2 )  e.  RR )
1815, 17readdcld 8056 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  B ) ^
2 )  +  ( ( Im `  B
) ^ 2 ) )  e.  RR )
1914sqge0d 10792 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Re `  B ) ^ 2 ) )
2016sqge0d 10792 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Im `  B ) ^ 2 ) )
2115, 17, 19, 20addge0d 8549 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) )
22 sqrt11ap 11203 . . . . . . 7  |-  ( ( ( ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) )  e.  RR  /\  0  <_  ( (
( Re `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )  /\  ( ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) )  e.  RR  /\  0  <_ 
( ( ( Re
`  B ) ^
2 )  +  ( ( Im `  B
) ^ 2 ) ) ) )  -> 
( ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) #  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) )  <->  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) ) )
239, 12, 18, 21, 22syl22anc 1250 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) #  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) )  <->  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) ) )
243, 23bitrd 188 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  <->  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) ) )
256recnd 8055 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A ) ^ 2 )  e.  CC )
268recnd 8055 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A ) ^ 2 )  e.  CC )
2715recnd 8055 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B ) ^ 2 )  e.  CC )
2817recnd 8055 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  B ) ^ 2 )  e.  CC )
29 addext 8637 . . . . . 6  |-  ( ( ( ( ( Re
`  A ) ^
2 )  e.  CC  /\  ( ( Im `  A ) ^ 2 )  e.  CC )  /\  ( ( ( Re `  B ) ^ 2 )  e.  CC  /\  ( ( Im `  B ) ^ 2 )  e.  CC ) )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) )  -> 
( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  \/  ( ( Im `  A ) ^ 2 ) #  ( ( Im
`  B ) ^
2 ) ) ) )
3025, 26, 27, 28, 29syl22anc 1250 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) )  -> 
( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  \/  ( ( Im `  A ) ^ 2 ) #  ( ( Im
`  B ) ^
2 ) ) ) )
3124, 30sylbid 150 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  ( (
( Re `  A
) ^ 2 ) #  ( ( Re `  B ) ^ 2 )  \/  ( ( Im `  A ) ^ 2 ) #  ( ( Im `  B
) ^ 2 ) ) ) )
325recnd 8055 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
3332sqvald 10762 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A ) ^ 2 )  =  ( ( Re `  A )  x.  ( Re `  A ) ) )
3414recnd 8055 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
3534sqvald 10762 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B ) ^ 2 )  =  ( ( Re `  B )  x.  ( Re `  B ) ) )
3633, 35breq12d 4046 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  <->  ( (
Re `  A )  x.  ( Re `  A
) ) #  ( ( Re `  B )  x.  ( Re `  B ) ) ) )
37 mulext 8641 . . . . . . . 8  |-  ( ( ( ( Re `  A )  e.  CC  /\  ( Re `  A
)  e.  CC )  /\  ( ( Re
`  B )  e.  CC  /\  ( Re
`  B )  e.  CC ) )  -> 
( ( ( Re
`  A )  x.  ( Re `  A
) ) #  ( ( Re `  B )  x.  ( Re `  B ) )  -> 
( ( Re `  A ) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) ) ) )
3832, 32, 34, 34, 37syl22anc 1250 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  A
) ) #  ( ( Re `  B )  x.  ( Re `  B ) )  -> 
( ( Re `  A ) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) ) ) )
3936, 38sylbid 150 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  -> 
( ( Re `  A ) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) ) ) )
40 oridm 758 . . . . . 6  |-  ( ( ( Re `  A
) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) )  <->  ( Re `  A ) #  ( Re `  B ) )
4139, 40imbitrdi 161 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  -> 
( Re `  A
) #  ( Re `  B ) ) )
427recnd 8055 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
4342sqvald 10762 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A ) ^ 2 )  =  ( ( Im `  A )  x.  ( Im `  A ) ) )
4416recnd 8055 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
4544sqvald 10762 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  B ) ^ 2 )  =  ( ( Im `  B )  x.  ( Im `  B ) ) )
4643, 45breq12d 4046 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 )  <->  ( (
Im `  A )  x.  ( Im `  A
) ) #  ( ( Im `  B )  x.  ( Im `  B ) ) ) )
47 mulext 8641 . . . . . . . 8  |-  ( ( ( ( Im `  A )  e.  CC  /\  ( Im `  A
)  e.  CC )  /\  ( ( Im
`  B )  e.  CC  /\  ( Im
`  B )  e.  CC ) )  -> 
( ( ( Im
`  A )  x.  ( Im `  A
) ) #  ( ( Im `  B )  x.  ( Im `  B ) )  -> 
( ( Im `  A ) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) ) ) )
4842, 42, 44, 44, 47syl22anc 1250 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A )  x.  ( Im `  A
) ) #  ( ( Im `  B )  x.  ( Im `  B ) )  -> 
( ( Im `  A ) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) ) ) )
4946, 48sylbid 150 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 )  -> 
( ( Im `  A ) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) ) ) )
50 oridm 758 . . . . . 6  |-  ( ( ( Im `  A
) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) )  <->  ( Im `  A ) #  ( Im `  B ) )
5149, 50imbitrdi 161 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 )  -> 
( Im `  A
) #  ( Im `  B ) ) )
5241, 51orim12d 787 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A ) ^ 2 ) #  ( ( Re `  B
) ^ 2 )  \/  ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 ) )  ->  ( ( Re
`  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
5331, 52syld 45 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
54 apreim 8630 . . . 4  |-  ( ( ( ( Re `  A )  e.  RR  /\  ( Im `  A
)  e.  RR )  /\  ( ( Re
`  B )  e.  RR  /\  ( Im
`  B )  e.  RR ) )  -> 
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
555, 7, 14, 16, 54syl22anc 1250 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
5653, 55sylibrd 169 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) ) )
574replimd 11106 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
5813replimd 11106 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  =  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) )
5957, 58breq12d 4046 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) ) )
6056, 59sylibrd 169 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  A #  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   _ici 7881    + caddc 7882    x. cmul 7884    <_ cle 8062   # cap 8608   2c2 9041   ^cexp 10630   Recre 11005   Imcim 11006   sqrcsqrt 11161   abscabs 11162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-rp 9729  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164
This theorem is referenced by:  abssubap0  11255  absltap  11674  absgtap  11675  apdifflemr  15691
  Copyright terms: Public domain W3C validator