ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absext Unicode version

Theorem absext 10557
Description: Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
Assertion
Ref Expression
absext  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  A #  B
) )

Proof of Theorem absext
StepHypRef Expression
1 absval2 10551 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) )
2 absval2 10551 . . . . . . 7  |-  ( B  e.  CC  ->  ( abs `  B )  =  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) ) )
31, 2breqan12d 3866 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  <->  ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) #  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) ) ) )
4 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
54recld 10433 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  RR )
65resqcld 10173 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A ) ^ 2 )  e.  RR )
74imcld 10434 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  RR )
87resqcld 10173 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A ) ^ 2 )  e.  RR )
96, 8readdcld 7578 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 )  +  ( ( Im `  A
) ^ 2 ) )  e.  RR )
105sqge0d 10174 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Re `  A ) ^ 2 ) )
117sqge0d 10174 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Im `  A ) ^ 2 ) )
126, 8, 10, 11addge0d 8060 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
( Re `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )
13 simpr 109 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1413recld 10433 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  RR )
1514resqcld 10173 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B ) ^ 2 )  e.  RR )
1613imcld 10434 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  RR )
1716resqcld 10173 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  B ) ^ 2 )  e.  RR )
1815, 17readdcld 7578 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  B ) ^
2 )  +  ( ( Im `  B
) ^ 2 ) )  e.  RR )
1914sqge0d 10174 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Re `  B ) ^ 2 ) )
2016sqge0d 10174 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
Im `  B ) ^ 2 ) )
2115, 17, 19, 20addge0d 8060 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  0  <_  ( (
( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) )
22 sqrt11ap 10532 . . . . . . 7  |-  ( ( ( ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) )  e.  RR  /\  0  <_  ( (
( Re `  A
) ^ 2 )  +  ( ( Im
`  A ) ^
2 ) ) )  /\  ( ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) )  e.  RR  /\  0  <_ 
( ( ( Re
`  B ) ^
2 )  +  ( ( Im `  B
) ^ 2 ) ) ) )  -> 
( ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) #  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) )  <->  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) ) )
239, 12, 18, 21, 22syl22anc 1176 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( sqr `  (
( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) ) #  ( sqr `  (
( ( Re `  B ) ^ 2 )  +  ( ( Im `  B ) ^ 2 ) ) )  <->  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) ) )
243, 23bitrd 187 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  <->  ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) ) ) )
256recnd 7577 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A ) ^ 2 )  e.  CC )
268recnd 7577 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A ) ^ 2 )  e.  CC )
2715recnd 7577 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B ) ^ 2 )  e.  CC )
2817recnd 7577 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  B ) ^ 2 )  e.  CC )
29 addext 8148 . . . . . 6  |-  ( ( ( ( ( Re
`  A ) ^
2 )  e.  CC  /\  ( ( Im `  A ) ^ 2 )  e.  CC )  /\  ( ( ( Re `  B ) ^ 2 )  e.  CC  /\  ( ( Im `  B ) ^ 2 )  e.  CC ) )  -> 
( ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) )  -> 
( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  \/  ( ( Im `  A ) ^ 2 ) #  ( ( Im
`  B ) ^
2 ) ) ) )
3025, 26, 27, 28, 29syl22anc 1176 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A ) ^ 2 )  +  ( ( Im `  A ) ^ 2 ) ) #  ( ( ( Re `  B
) ^ 2 )  +  ( ( Im
`  B ) ^
2 ) )  -> 
( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  \/  ( ( Im `  A ) ^ 2 ) #  ( ( Im
`  B ) ^
2 ) ) ) )
3124, 30sylbid 149 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  ( (
( Re `  A
) ^ 2 ) #  ( ( Re `  B ) ^ 2 )  \/  ( ( Im `  A ) ^ 2 ) #  ( ( Im `  B
) ^ 2 ) ) ) )
325recnd 7577 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  A
)  e.  CC )
3332sqvald 10144 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  A ) ^ 2 )  =  ( ( Re `  A )  x.  ( Re `  A ) ) )
3414recnd 7577 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  B
)  e.  CC )
3534sqvald 10144 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Re `  B ) ^ 2 )  =  ( ( Re `  B )  x.  ( Re `  B ) ) )
3633, 35breq12d 3864 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  <->  ( (
Re `  A )  x.  ( Re `  A
) ) #  ( ( Re `  B )  x.  ( Re `  B ) ) ) )
37 mulext 8152 . . . . . . . 8  |-  ( ( ( ( Re `  A )  e.  CC  /\  ( Re `  A
)  e.  CC )  /\  ( ( Re
`  B )  e.  CC  /\  ( Re
`  B )  e.  CC ) )  -> 
( ( ( Re
`  A )  x.  ( Re `  A
) ) #  ( ( Re `  B )  x.  ( Re `  B ) )  -> 
( ( Re `  A ) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) ) ) )
3832, 32, 34, 34, 37syl22anc 1176 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  A
) ) #  ( ( Re `  B )  x.  ( Re `  B ) )  -> 
( ( Re `  A ) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) ) ) )
3936, 38sylbid 149 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  -> 
( ( Re `  A ) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) ) ) )
40 oridm 710 . . . . . 6  |-  ( ( ( Re `  A
) #  ( Re `  B )  \/  (
Re `  A ) #  ( Re `  B ) )  <->  ( Re `  A ) #  ( Re `  B ) )
4139, 40syl6ib 160 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A ) ^
2 ) #  ( ( Re `  B ) ^ 2 )  -> 
( Re `  A
) #  ( Re `  B ) ) )
427recnd 7577 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  A
)  e.  CC )
4342sqvald 10144 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  A ) ^ 2 )  =  ( ( Im `  A )  x.  ( Im `  A ) ) )
4416recnd 7577 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Im `  B
)  e.  CC )
4544sqvald 10144 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( Im `  B ) ^ 2 )  =  ( ( Im `  B )  x.  ( Im `  B ) ) )
4643, 45breq12d 3864 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 )  <->  ( (
Im `  A )  x.  ( Im `  A
) ) #  ( ( Im `  B )  x.  ( Im `  B ) ) ) )
47 mulext 8152 . . . . . . . 8  |-  ( ( ( ( Im `  A )  e.  CC  /\  ( Im `  A
)  e.  CC )  /\  ( ( Im
`  B )  e.  CC  /\  ( Im
`  B )  e.  CC ) )  -> 
( ( ( Im
`  A )  x.  ( Im `  A
) ) #  ( ( Im `  B )  x.  ( Im `  B ) )  -> 
( ( Im `  A ) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) ) ) )
4842, 42, 44, 44, 47syl22anc 1176 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A )  x.  ( Im `  A
) ) #  ( ( Im `  B )  x.  ( Im `  B ) )  -> 
( ( Im `  A ) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) ) ) )
4946, 48sylbid 149 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 )  -> 
( ( Im `  A ) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) ) ) )
50 oridm 710 . . . . . 6  |-  ( ( ( Im `  A
) #  ( Im `  B )  \/  (
Im `  A ) #  ( Im `  B ) )  <->  ( Im `  A ) #  ( Im `  B ) )
5149, 50syl6ib 160 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 )  -> 
( Im `  A
) #  ( Im `  B ) ) )
5241, 51orim12d 736 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( Re `  A ) ^ 2 ) #  ( ( Re `  B
) ^ 2 )  \/  ( ( Im
`  A ) ^
2 ) #  ( ( Im `  B ) ^ 2 ) )  ->  ( ( Re
`  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
5331, 52syld 45 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
54 apreim 8141 . . . 4  |-  ( ( ( ( Re `  A )  e.  RR  /\  ( Im `  A
)  e.  RR )  /\  ( ( Re
`  B )  e.  RR  /\  ( Im
`  B )  e.  RR ) )  -> 
( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
555, 7, 14, 16, 54syl22anc 1176 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  +  ( _i  x.  (
Im `  A )
) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) )  <->  ( (
Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
5653, 55sylibrd 168 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) ) )
574replimd 10436 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  =  ( ( Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) )
5813replimd 10436 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  =  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) )
5957, 58breq12d 3864 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( (
Re `  A )  +  ( _i  x.  ( Im `  A ) ) ) #  ( ( Re `  B )  +  ( _i  x.  ( Im `  B ) ) ) ) )
6056, 59sylibrd 168 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A
) #  ( abs `  B
)  ->  A #  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 665    e. wcel 1439   class class class wbr 3851   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410   0cc0 7411   _ici 7413    + caddc 7414    x. cmul 7416    <_ cle 7584   # cap 8119   2c2 8534   ^cexp 10015   Recre 10335   Imcim 10336   sqrcsqrt 10490   abscabs 10491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493
This theorem is referenced by:  abssubap0  10584  absltap  10964  absgtap  10965
  Copyright terms: Public domain W3C validator