ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt2msq Unicode version

Theorem lt2msq 8668
Description: Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
lt2msq  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  <->  ( A  x.  A )  <  ( B  x.  B )
) )

Proof of Theorem lt2msq
StepHypRef Expression
1 lt2msq1 8667 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  <  ( B  x.  B )
)
213expia 1184 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  ->  ( A  < 
B  ->  ( A  x.  A )  <  ( B  x.  B )
) )
32adantrr 471 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  ->  ( A  x.  A )  <  ( B  x.  B )
) )
4 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B  e.  RR  /\  0  <_  B ) )
5 simpll 519 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  RR )
6 lt2msq1 8667 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  0  <_  B )  /\  A  e.  RR  /\  B  <  A )  ->  ( B  x.  B )  <  ( A  x.  A )
)
763expia 1184 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  0  <_  B )  /\  A  e.  RR )  ->  ( B  < 
A  ->  ( B  x.  B )  <  ( A  x.  A )
) )
84, 5, 7syl2anc 409 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B  <  A  ->  ( B  x.  B )  <  ( A  x.  A )
) )
98con3d 621 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( -.  ( B  x.  B
)  <  ( A  x.  A )  ->  -.  B  <  A ) )
105, 5remulcld 7820 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  x.  A )  e.  RR )
11 simprl 521 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  RR )
1211, 11remulcld 7820 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( B  x.  B )  e.  RR )
1310, 12lenltd 7904 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A )  <_  ( B  x.  B
)  <->  -.  ( B  x.  B )  <  ( A  x.  A )
) )
145, 11lenltd 7904 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <_  B  <->  -.  B  <  A ) )
159, 13, 143imtr4d 202 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A )  <_  ( B  x.  B
)  ->  A  <_  B ) )
165recnd 7818 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  A  e.  CC )
1711recnd 7818 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  B  e.  CC )
18 mulext 8400 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A  e.  CC )  /\  ( B  e.  CC  /\  B  e.  CC ) )  -> 
( ( A  x.  A ) #  ( B  x.  B )  ->  ( A #  B  \/  A #  B ) ) )
1916, 16, 17, 17, 18syl22anc 1218 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A ) #  ( B  x.  B
)  ->  ( A #  B  \/  A #  B
) ) )
20 oridm 747 . . . . 5  |-  ( ( A #  B  \/  A #  B )  <->  A #  B
)
2119, 20syl6ib 160 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A ) #  ( B  x.  B
)  ->  A #  B
) )
2215, 21anim12d 333 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( (
( A  x.  A
)  <_  ( B  x.  B )  /\  ( A  x.  A ) #  ( B  x.  B
) )  ->  ( A  <_  B  /\  A #  B ) ) )
23 ltleap 8418 . . . 4  |-  ( ( ( A  x.  A
)  e.  RR  /\  ( B  x.  B
)  e.  RR )  ->  ( ( A  x.  A )  < 
( B  x.  B
)  <->  ( ( A  x.  A )  <_ 
( B  x.  B
)  /\  ( A  x.  A ) #  ( B  x.  B ) ) ) )
2410, 12, 23syl2anc 409 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A )  <  ( B  x.  B
)  <->  ( ( A  x.  A )  <_ 
( B  x.  B
)  /\  ( A  x.  A ) #  ( B  x.  B ) ) ) )
25 ltleap 8418 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  ( A  <_  B  /\  A #  B ) ) )
265, 11, 25syl2anc 409 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  <->  ( A  <_  B  /\  A #  B ) ) )
2722, 24, 263imtr4d 202 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( ( A  x.  A )  <  ( B  x.  B
)  ->  A  <  B ) )
283, 27impbid 128 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B )
)  ->  ( A  <  B  <->  ( A  x.  A )  <  ( B  x.  B )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644    x. cmul 7649    < clt 7824    <_ cle 7825   # cap 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368
This theorem is referenced by:  le2msq  8683  lt2msqi  8696  lt2sq  10397
  Copyright terms: Public domain W3C validator