ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nn Unicode version

Theorem nn0ge2m1nn 9429
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
Assertion
Ref Expression
nn0ge2m1nn  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  NN )

Proof of Theorem nn0ge2m1nn
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  NN0 )
2 1red 8161 . . . . . . . 8  |-  ( N  e.  NN0  ->  1  e.  RR )
3 2re 9180 . . . . . . . . 9  |-  2  e.  RR
43a1i 9 . . . . . . . 8  |-  ( N  e.  NN0  ->  2  e.  RR )
5 nn0re 9378 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  RR )
62, 4, 53jca 1201 . . . . . . 7  |-  ( N  e.  NN0  ->  ( 1  e.  RR  /\  2  e.  RR  /\  N  e.  RR ) )
76adantr 276 . . . . . 6  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( 1  e.  RR  /\  2  e.  RR  /\  N  e.  RR )
)
8 simpr 110 . . . . . . 7  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  <_  N )
9 1lt2 9280 . . . . . . 7  |-  1  <  2
108, 9jctil 312 . . . . . 6  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( 1  <  2  /\  2  <_  N ) )
11 ltleletr 8228 . . . . . 6  |-  ( ( 1  e.  RR  /\  2  e.  RR  /\  N  e.  RR )  ->  (
( 1  <  2  /\  2  <_  N )  ->  1  <_  N
) )
127, 10, 11sylc 62 . . . . 5  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
1  <_  N )
13 elnnnn0c 9414 . . . . 5  |-  ( N  e.  NN  <->  ( N  e.  NN0  /\  1  <_  N ) )
141, 12, 13sylanbrc 417 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  NN )
15 nn1m1nn 9128 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  ( N  -  1
)  e.  NN ) )
1614, 15syl 14 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  =  1  \/  ( N  - 
1 )  e.  NN ) )
17 1re 8145 . . . . . . . . . . 11  |-  1  e.  RR
183, 17lenlti 8247 . . . . . . . . . 10  |-  ( 2  <_  1  <->  -.  1  <  2 )
1918biimpi 120 . . . . . . . . 9  |-  ( 2  <_  1  ->  -.  1  <  2 )
209, 19mt2 643 . . . . . . . 8  |-  -.  2  <_  1
21 breq2 4087 . . . . . . . 8  |-  ( N  =  1  ->  (
2  <_  N  <->  2  <_  1 ) )
2220, 21mtbiri 679 . . . . . . 7  |-  ( N  =  1  ->  -.  2  <_  N )
2322pm2.21d 622 . . . . . 6  |-  ( N  =  1  ->  (
2  <_  N  ->  ( N  -  1 )  e.  NN ) )
2423com12 30 . . . . 5  |-  ( 2  <_  N  ->  ( N  =  1  ->  ( N  -  1 )  e.  NN ) )
2524adantl 277 . . . 4  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  =  1  ->  ( N  - 
1 )  e.  NN ) )
2625orim1d 792 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( ( N  =  1  \/  ( N  -  1 )  e.  NN )  ->  (
( N  -  1 )  e.  NN  \/  ( N  -  1
)  e.  NN ) ) )
2716, 26mpd 13 . 2  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( ( N  - 
1 )  e.  NN  \/  ( N  -  1 )  e.  NN ) )
28 oridm 762 . 2  |-  ( ( ( N  -  1 )  e.  NN  \/  ( N  -  1
)  e.  NN )  <-> 
( N  -  1 )  e.  NN )
2927, 28sylib 122 1  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   RRcr 7998   1c1 8000    < clt 8181    <_ cle 8182    - cmin 8317   NNcn 9110   2c2 9161   NN0cn0 9369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-inn 9111  df-2 9169  df-n0 9370
This theorem is referenced by:  nn0ge2m1nn0  9430
  Copyright terms: Public domain W3C validator