Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0ge2m1nn | Unicode version |
Description: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.) |
Ref | Expression |
---|---|
nn0ge2m1nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . 5 | |
2 | 1red 7914 | . . . . . . . 8 | |
3 | 2re 8927 | . . . . . . . . 9 | |
4 | 3 | a1i 9 | . . . . . . . 8 |
5 | nn0re 9123 | . . . . . . . 8 | |
6 | 2, 4, 5 | 3jca 1167 | . . . . . . 7 |
7 | 6 | adantr 274 | . . . . . 6 |
8 | simpr 109 | . . . . . . 7 | |
9 | 1lt2 9026 | . . . . . . 7 | |
10 | 8, 9 | jctil 310 | . . . . . 6 |
11 | ltleletr 7980 | . . . . . 6 | |
12 | 7, 10, 11 | sylc 62 | . . . . 5 |
13 | elnnnn0c 9159 | . . . . 5 | |
14 | 1, 12, 13 | sylanbrc 414 | . . . 4 |
15 | nn1m1nn 8875 | . . . 4 | |
16 | 14, 15 | syl 14 | . . 3 |
17 | 1re 7898 | . . . . . . . . . . 11 | |
18 | 3, 17 | lenlti 7999 | . . . . . . . . . 10 |
19 | 18 | biimpi 119 | . . . . . . . . 9 |
20 | 9, 19 | mt2 630 | . . . . . . . 8 |
21 | breq2 3986 | . . . . . . . 8 | |
22 | 20, 21 | mtbiri 665 | . . . . . . 7 |
23 | 22 | pm2.21d 609 | . . . . . 6 |
24 | 23 | com12 30 | . . . . 5 |
25 | 24 | adantl 275 | . . . 4 |
26 | 25 | orim1d 777 | . . 3 |
27 | 16, 26 | mpd 13 | . 2 |
28 | oridm 747 | . 2 | |
29 | 27, 28 | sylib 121 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cr 7752 c1 7754 clt 7933 cle 7934 cmin 8069 cn 8857 c2 8908 cn0 9114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-inn 8858 df-2 8916 df-n0 9115 |
This theorem is referenced by: nn0ge2m1nn0 9175 |
Copyright terms: Public domain | W3C validator |