ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl Unicode version

Theorem resqrexlemoverl 10825
Description: Lemma for resqrex 10830. Every term in the sequence is an overestimate compared with the limit 
L. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemoverl.k  |-  ( ph  ->  K  e.  NN )
Assertion
Ref Expression
resqrexlemoverl  |-  ( ph  ->  L  <_  ( F `  K ) )
Distinct variable groups:    y, A, z   
e, F, i, j   
y, F, z, i, j    e, K, i, j    y, K, z   
e, L, i, j   
y, L, z    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( e, i, j)

Proof of Theorem resqrexlemoverl
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 oveq2 5790 . . . . . . . . 9  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( L  +  e )  =  ( L  +  ( L  -  ( F `
 K ) ) ) )
21breq2d 3949 . . . . . . . 8  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( ( F `  i )  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
3 oveq2 5790 . . . . . . . . 9  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( ( F `  i )  +  e )  =  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )
43breq2d 3949 . . . . . . . 8  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( L  <  ( ( F `  i )  +  e )  <->  L  <  ( ( F `  i )  +  ( L  -  ( F `  K ) ) ) ) )
52, 4anbi12d 465 . . . . . . 7  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( (
( F `  i
)  <  ( L  +  e )  /\  L  <  ( ( F `
 i )  +  e ) )  <->  ( ( F `  i )  <  ( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
65rexralbidv 2464 . . . . . 6  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
87adantr 274 . . . . . 6  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
9 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
10 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
11 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
129, 10, 11resqrexlemf 10811 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
13 resqrexlemoverl.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
1412, 13ffvelrnd 5564 . . . . . . . . 9  |-  ( ph  ->  ( F `  K
)  e.  RR+ )
1514rpred 9513 . . . . . . . 8  |-  ( ph  ->  ( F `  K
)  e.  RR )
16 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
17 difrp 9509 . . . . . . . 8  |-  ( ( ( F `  K
)  e.  RR  /\  L  e.  RR )  ->  ( ( F `  K )  <  L  <->  ( L  -  ( F `
 K ) )  e.  RR+ ) )
1815, 16, 17syl2anc 409 . . . . . . 7  |-  ( ph  ->  ( ( F `  K )  <  L  <->  ( L  -  ( F `
 K ) )  e.  RR+ ) )
1918biimpa 294 . . . . . 6  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  ( L  -  ( F `  K ) )  e.  RR+ )
206, 8, 19rspcdva 2798 . . . . 5  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
21 fveq2 5429 . . . . . . 7  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2221raleqdv 2635 . . . . . 6  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) ) )
2322cbvrexv 2658 . . . . 5  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
2420, 23sylib 121 . . . 4  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
25 fveq2 5429 . . . . . . . . . . 11  |-  ( i  =  K  ->  ( F `  i )  =  ( F `  K ) )
2625breq1d 3947 . . . . . . . . . 10  |-  ( i  =  K  ->  (
( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  <->  ( F `  K )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
2725oveq1d 5797 . . . . . . . . . . 11  |-  ( i  =  K  ->  (
( F `  i
)  +  ( L  -  ( F `  K ) ) )  =  ( ( F `
 K )  +  ( L  -  ( F `  K )
) ) )
2827breq2d 3949 . . . . . . . . . 10  |-  ( i  =  K  ->  ( L  <  ( ( F `
 i )  +  ( L  -  ( F `  K )
) )  <->  L  <  ( ( F `  K
)  +  ( L  -  ( F `  K ) ) ) ) )
2926, 28anbi12d 465 . . . . . . . . 9  |-  ( i  =  K  ->  (
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) )  <->  ( ( F `
 K )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) ) )
30 simprr 522 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) )
3130adantr 274 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
32 simprl 521 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  NN )
3332nnzd 9196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  ZZ )
3433adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  b  e.  ZZ )
3513ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  K  e.  NN )
3635nnzd 9196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  K  e.  ZZ )
3736adantr 274 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  K  e.  ZZ )
38 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  b  <_  K )
39 eluz2 9356 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  b
)  <->  ( b  e.  ZZ  /\  K  e.  ZZ  /\  b  <_  K ) )
4034, 37, 38, 39syl3anbrc 1166 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  K  e.  ( ZZ>= `  b )
)
4129, 31, 40rspcdva 2798 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( ( F `  K )  <  ( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) )
4241simprd 113 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  <  ( ( F `  K
)  +  ( L  -  ( F `  K ) ) ) )
4314ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  RR+ )
4443rpcnd 9515 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  CC )
4544adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( F `  K )  e.  CC )
4616ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  e.  RR )
4746recnd 7818 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  e.  CC )
4847adantr 274 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  e.  CC )
4945, 48pncan3d 8100 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( ( F `  K )  +  ( L  -  ( F `  K ) ) )  =  L )
5042, 49breqtrd 3962 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  <  L )
5116ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  e.  RR )
5251ltnrd 7899 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  -.  L  <  L )
5350, 52pm2.21fal 1352 . . . . 5  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  -> F.  )
5410ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  A  e.  RR )
5511ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  0  <_  A )
5613ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  K  e.  NN )
5732adantr 274 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  b  e.  NN )
58 simpr 109 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  K  <  b )
599, 54, 55, 56, 57, 58resqrexlemdecn 10816 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  b )  <  ( F `  K )
)
6015ad3antrrr 484 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  K )  e.  RR )
6112ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  F : NN --> RR+ )
6261, 32ffvelrnd 5564 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  RR+ )
6362rpred 9513 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  RR )
6463adantr 274 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  b )  e.  RR )
65 fveq2 5429 . . . . . . . . . . . . . . 15  |-  ( i  =  b  ->  ( F `  i )  =  ( F `  b ) )
6665breq1d 3947 . . . . . . . . . . . . . 14  |-  ( i  =  b  ->  (
( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  <->  ( F `  b )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
6765oveq1d 5797 . . . . . . . . . . . . . . 15  |-  ( i  =  b  ->  (
( F `  i
)  +  ( L  -  ( F `  K ) ) )  =  ( ( F `
 b )  +  ( L  -  ( F `  K )
) ) )
6867breq2d 3949 . . . . . . . . . . . . . 14  |-  ( i  =  b  ->  ( L  <  ( ( F `
 i )  +  ( L  -  ( F `  K )
) )  <->  L  <  ( ( F `  b
)  +  ( L  -  ( F `  K ) ) ) ) )
6966, 68anbi12d 465 . . . . . . . . . . . . 13  |-  ( i  =  b  ->  (
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) )  <->  ( ( F `
 b )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) ) )
70 uzid 9364 . . . . . . . . . . . . . 14  |-  ( b  e.  ZZ  ->  b  e.  ( ZZ>= `  b )
)
7133, 70syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  (
ZZ>= `  b ) )
7269, 30, 71rspcdva 2798 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 b )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) )
7372simprd 113 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  <  (
( F `  b
)  +  ( L  -  ( F `  K ) ) ) )
7462rpcnd 9515 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  CC )
7574, 47, 44addsubassd 8117 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( ( F `  b )  +  L )  -  ( F `  K ) )  =  ( ( F `  b )  +  ( L  -  ( F `  K ) ) ) )
7673, 75breqtrrd 3964 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  <  (
( ( F `  b )  +  L
)  -  ( F `
 K ) ) )
7715ad2antrr 480 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  RR )
7863, 46readdcld 7819 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 b )  +  L )  e.  RR )
7977, 46, 78ltaddsub2d 8332 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( ( F `  K )  +  L )  < 
( ( F `  b )  +  L
)  <->  L  <  ( ( ( F `  b
)  +  L )  -  ( F `  K ) ) ) )
8076, 79mpbird 166 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 K )  +  L )  <  (
( F `  b
)  +  L ) )
8177, 63, 46ltadd1d 8324 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 K )  < 
( F `  b
)  <->  ( ( F `
 K )  +  L )  <  (
( F `  b
)  +  L ) ) )
8280, 81mpbird 166 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  <  ( F `  b )
)
8382adantr 274 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  K )  <  ( F `  b )
)
8460, 64, 83ltnsymd 7906 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  -.  ( F `  b )  <  ( F `  K
) )
8559, 84pm2.21fal 1352 . . . . 5  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  -> F.  )
86 zlelttric 9123 . . . . . 6  |-  ( ( b  e.  ZZ  /\  K  e.  ZZ )  ->  ( b  <_  K  \/  K  <  b ) )
8733, 36, 86syl2anc 409 . . . . 5  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( b  <_  K  \/  K  <  b ) )
8853, 85, 87mpjaodan 788 . . . 4  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  -> F.  )
8924, 88rexlimddv 2557 . . 3  |-  ( (
ph  /\  ( F `  K )  <  L
)  -> F.  )
9089inegd 1351 . 2  |-  ( ph  ->  -.  ( F `  K )  <  L
)
9116, 15lenltd 7904 . 2  |-  ( ph  ->  ( L  <_  ( F `  K )  <->  -.  ( F `  K
)  <  L )
)
9290, 91mpbird 166 1  |-  ( ph  ->  L  <_  ( F `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332   F. wfal 1337    e. wcel 1481   A.wral 2417   E.wrex 2418   {csn 3532   class class class wbr 3937    X. cxp 4545   -->wf 5127   ` cfv 5131  (class class class)co 5782    e. cmpo 5784   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    < clt 7824    <_ cle 7825    - cmin 7957    / cdiv 8456   NNcn 8744   2c2 8795   ZZcz 9078   ZZ>=cuz 9350   RR+crp 9470    seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324
This theorem is referenced by:  resqrexlemglsq  10826
  Copyright terms: Public domain W3C validator