ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemoverl Unicode version

Theorem resqrexlemoverl 11032
Description: Lemma for resqrex 11037. Every term in the sequence is an overestimate compared with the limit 
L. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
resqrexlemex.a  |-  ( ph  ->  A  e.  RR )
resqrexlemex.agt0  |-  ( ph  ->  0  <_  A )
resqrexlemgt0.rr  |-  ( ph  ->  L  e.  RR )
resqrexlemgt0.lim  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
resqrexlemoverl.k  |-  ( ph  ->  K  e.  NN )
Assertion
Ref Expression
resqrexlemoverl  |-  ( ph  ->  L  <_  ( F `  K ) )
Distinct variable groups:    y, A, z   
e, F, i, j   
y, F, z, i, j    e, K, i, j    y, K, z   
e, L, i, j   
y, L, z    ph, y,
z
Allowed substitution hints:    ph( e, i, j)    A( e, i, j)

Proof of Theorem resqrexlemoverl
Dummy variable  b is distinct from all other variables.
StepHypRef Expression
1 oveq2 5885 . . . . . . . . 9  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( L  +  e )  =  ( L  +  ( L  -  ( F `
 K ) ) ) )
21breq2d 4017 . . . . . . . 8  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( ( F `  i )  <  ( L  +  e )  <->  ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
3 oveq2 5885 . . . . . . . . 9  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( ( F `  i )  +  e )  =  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )
43breq2d 4017 . . . . . . . 8  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( L  <  ( ( F `  i )  +  e )  <->  L  <  ( ( F `  i )  +  ( L  -  ( F `  K ) ) ) ) )
52, 4anbi12d 473 . . . . . . 7  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( (
( F `  i
)  <  ( L  +  e )  /\  L  <  ( ( F `
 i )  +  e ) )  <->  ( ( F `  i )  <  ( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
65rexralbidv 2503 . . . . . 6  |-  ( e  =  ( L  -  ( F `  K ) )  ->  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) )  <->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )
7 resqrexlemgt0.lim . . . . . . 7  |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
87adantr 276 . . . . . 6  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `  i )  +  e ) ) )
9 resqrexlemex.seq . . . . . . . . . . 11  |-  F  =  seq 1 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y ) )  /  2 ) ) ,  ( NN  X.  { ( 1  +  A ) } ) )
10 resqrexlemex.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  RR )
11 resqrexlemex.agt0 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  A )
129, 10, 11resqrexlemf 11018 . . . . . . . . . 10  |-  ( ph  ->  F : NN --> RR+ )
13 resqrexlemoverl.k . . . . . . . . . 10  |-  ( ph  ->  K  e.  NN )
1412, 13ffvelcdmd 5654 . . . . . . . . 9  |-  ( ph  ->  ( F `  K
)  e.  RR+ )
1514rpred 9698 . . . . . . . 8  |-  ( ph  ->  ( F `  K
)  e.  RR )
16 resqrexlemgt0.rr . . . . . . . 8  |-  ( ph  ->  L  e.  RR )
17 difrp 9694 . . . . . . . 8  |-  ( ( ( F `  K
)  e.  RR  /\  L  e.  RR )  ->  ( ( F `  K )  <  L  <->  ( L  -  ( F `
 K ) )  e.  RR+ ) )
1815, 16, 17syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( ( F `  K )  <  L  <->  ( L  -  ( F `
 K ) )  e.  RR+ ) )
1918biimpa 296 . . . . . 6  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  ( L  -  ( F `  K ) )  e.  RR+ )
206, 8, 19rspcdva 2848 . . . . 5  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
21 fveq2 5517 . . . . . . 7  |-  ( j  =  b  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  b )
)
2221raleqdv 2679 . . . . . 6  |-  ( j  =  b  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  <->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) ) )
2322cbvrexv 2706 . . . . 5  |-  ( E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) )  <->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
2420, 23sylib 122 . . . 4  |-  ( (
ph  /\  ( F `  K )  <  L
)  ->  E. b  e.  NN  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
25 fveq2 5517 . . . . . . . . . . 11  |-  ( i  =  K  ->  ( F `  i )  =  ( F `  K ) )
2625breq1d 4015 . . . . . . . . . 10  |-  ( i  =  K  ->  (
( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  <->  ( F `  K )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
2725oveq1d 5892 . . . . . . . . . . 11  |-  ( i  =  K  ->  (
( F `  i
)  +  ( L  -  ( F `  K ) ) )  =  ( ( F `
 K )  +  ( L  -  ( F `  K )
) ) )
2827breq2d 4017 . . . . . . . . . 10  |-  ( i  =  K  ->  ( L  <  ( ( F `
 i )  +  ( L  -  ( F `  K )
) )  <->  L  <  ( ( F `  K
)  +  ( L  -  ( F `  K ) ) ) ) )
2926, 28anbi12d 473 . . . . . . . . 9  |-  ( i  =  K  ->  (
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) )  <->  ( ( F `
 K )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) ) )
30 simprr 531 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) )
3130adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  A. i  e.  ( ZZ>= `  b )
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) ) )
32 simprl 529 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  NN )
3332nnzd 9376 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  ZZ )
3433adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  b  e.  ZZ )
3513ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  K  e.  NN )
3635nnzd 9376 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  K  e.  ZZ )
3736adantr 276 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  K  e.  ZZ )
38 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  b  <_  K )
39 eluz2 9536 . . . . . . . . . 10  |-  ( K  e.  ( ZZ>= `  b
)  <->  ( b  e.  ZZ  /\  K  e.  ZZ  /\  b  <_  K ) )
4034, 37, 38, 39syl3anbrc 1181 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  K  e.  ( ZZ>= `  b )
)
4129, 31, 40rspcdva 2848 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( ( F `  K )  <  ( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  K )  +  ( L  -  ( F `
 K ) ) ) ) )
4241simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  <  ( ( F `  K
)  +  ( L  -  ( F `  K ) ) ) )
4314ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  RR+ )
4443rpcnd 9700 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  CC )
4544adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( F `  K )  e.  CC )
4616ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  e.  RR )
4746recnd 7988 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  e.  CC )
4847adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  e.  CC )
4945, 48pncan3d 8273 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  ( ( F `  K )  +  ( L  -  ( F `  K ) ) )  =  L )
5042, 49breqtrd 4031 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  <  L )
5116ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  L  e.  RR )
5251ltnrd 8071 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  ->  -.  L  <  L )
5350, 52pm2.21fal 1373 . . . . 5  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  b  <_  K
)  -> F.  )
5410ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  A  e.  RR )
5511ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  0  <_  A )
5613ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  K  e.  NN )
5732adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  b  e.  NN )
58 simpr 110 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  K  <  b )
599, 54, 55, 56, 57, 58resqrexlemdecn 11023 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  b )  <  ( F `  K )
)
6015ad3antrrr 492 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  K )  e.  RR )
6112ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  F : NN --> RR+ )
6261, 32ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  RR+ )
6362rpred 9698 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  RR )
6463adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  b )  e.  RR )
65 fveq2 5517 . . . . . . . . . . . . . . 15  |-  ( i  =  b  ->  ( F `  i )  =  ( F `  b ) )
6665breq1d 4015 . . . . . . . . . . . . . 14  |-  ( i  =  b  ->  (
( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  <->  ( F `  b )  <  ( L  +  ( L  -  ( F `  K ) ) ) ) )
6765oveq1d 5892 . . . . . . . . . . . . . . 15  |-  ( i  =  b  ->  (
( F `  i
)  +  ( L  -  ( F `  K ) ) )  =  ( ( F `
 b )  +  ( L  -  ( F `  K )
) ) )
6867breq2d 4017 . . . . . . . . . . . . . 14  |-  ( i  =  b  ->  ( L  <  ( ( F `
 i )  +  ( L  -  ( F `  K )
) )  <->  L  <  ( ( F `  b
)  +  ( L  -  ( F `  K ) ) ) ) )
6966, 68anbi12d 473 . . . . . . . . . . . . 13  |-  ( i  =  b  ->  (
( ( F `  i )  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  (
( F `  i
)  +  ( L  -  ( F `  K ) ) ) )  <->  ( ( F `
 b )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) ) )
70 uzid 9544 . . . . . . . . . . . . . 14  |-  ( b  e.  ZZ  ->  b  e.  ( ZZ>= `  b )
)
7133, 70syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  b  e.  (
ZZ>= `  b ) )
7269, 30, 71rspcdva 2848 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 b )  < 
( L  +  ( L  -  ( F `
 K ) ) )  /\  L  < 
( ( F `  b )  +  ( L  -  ( F `
 K ) ) ) ) )
7372simprd 114 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  <  (
( F `  b
)  +  ( L  -  ( F `  K ) ) ) )
7462rpcnd 9700 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  b )  e.  CC )
7574, 47, 44addsubassd 8290 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( ( F `  b )  +  L )  -  ( F `  K ) )  =  ( ( F `  b )  +  ( L  -  ( F `  K ) ) ) )
7673, 75breqtrrd 4033 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  L  <  (
( ( F `  b )  +  L
)  -  ( F `
 K ) ) )
7715ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  e.  RR )
7863, 46readdcld 7989 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 b )  +  L )  e.  RR )
7977, 46, 78ltaddsub2d 8505 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( ( F `  K )  +  L )  < 
( ( F `  b )  +  L
)  <->  L  <  ( ( ( F `  b
)  +  L )  -  ( F `  K ) ) ) )
8076, 79mpbird 167 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 K )  +  L )  <  (
( F `  b
)  +  L ) )
8177, 63, 46ltadd1d 8497 . . . . . . . . 9  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( ( F `
 K )  < 
( F `  b
)  <->  ( ( F `
 K )  +  L )  <  (
( F `  b
)  +  L ) ) )
8280, 81mpbird 167 . . . . . . . 8  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( F `  K )  <  ( F `  b )
)
8382adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  ( F `  K )  <  ( F `  b )
)
8460, 64, 83ltnsymd 8079 . . . . . 6  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  ->  -.  ( F `  b )  <  ( F `  K
) )
8559, 84pm2.21fal 1373 . . . . 5  |-  ( ( ( ( ph  /\  ( F `  K )  <  L )  /\  ( b  e.  NN  /\ 
A. i  e.  (
ZZ>= `  b ) ( ( F `  i
)  <  ( L  +  ( L  -  ( F `  K ) ) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  /\  K  <  b
)  -> F.  )
86 zlelttric 9300 . . . . . 6  |-  ( ( b  e.  ZZ  /\  K  e.  ZZ )  ->  ( b  <_  K  \/  K  <  b ) )
8733, 36, 86syl2anc 411 . . . . 5  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  ->  ( b  <_  K  \/  K  <  b ) )
8853, 85, 87mpjaodan 798 . . . 4  |-  ( ( ( ph  /\  ( F `  K )  <  L )  /\  (
b  e.  NN  /\  A. i  e.  ( ZZ>= `  b ) ( ( F `  i )  <  ( L  +  ( L  -  ( F `  K )
) )  /\  L  <  ( ( F `  i )  +  ( L  -  ( F `
 K ) ) ) ) ) )  -> F.  )
8924, 88rexlimddv 2599 . . 3  |-  ( (
ph  /\  ( F `  K )  <  L
)  -> F.  )
9089inegd 1372 . 2  |-  ( ph  ->  -.  ( F `  K )  <  L
)
9116, 15lenltd 8077 . 2  |-  ( ph  ->  ( L  <_  ( F `  K )  <->  -.  ( F `  K
)  <  L )
)
9290, 91mpbird 167 1  |-  ( ph  ->  L  <_  ( F `  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353   F. wfal 1358    e. wcel 2148   A.wral 2455   E.wrex 2456   {csn 3594   class class class wbr 4005    X. cxp 4626   -->wf 5214   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    < clt 7994    <_ cle 7995    - cmin 8130    / cdiv 8631   NNcn 8921   2c2 8972   ZZcz 9255   ZZ>=cuz 9530   RR+crp 9655    seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  resqrexlemglsq  11033
  Copyright terms: Public domain W3C validator