ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 Unicode version

Theorem climge0 11578
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1  |-  Z  =  ( ZZ>= `  M )
climrecl.2  |-  ( ph  ->  M  e.  ZZ )
climrecl.3  |-  ( ph  ->  F  ~~>  A )
climrecl.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climge0.5  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
Assertion
Ref Expression
climge0  |-  ( ph  ->  0  <_  A )
Distinct variable groups:    k, F    k, M    ph, k    k, Z    A, k

Proof of Theorem climge0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2 climrecl.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  M  e.  ZZ )
4 climrecl.3 . . . . . . . . . 10  |-  ( ph  ->  F  ~~>  A )
5 climrecl.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
61, 2, 4, 5climrecl 11577 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  RR )
87renegcld 8451 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR )
96lt0neg1d 8587 . . . . . . . 8  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
109biimpa 296 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  0  <  -u A )
118, 10elrpd 9814 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR+ )
12 eqidd 2205 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
134adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  F  ~~>  A )
141, 3, 11, 12, 13climi2 11541 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  -u A
)
151r19.2uz 11246 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  -u A  ->  E. k  e.  Z  ( abs `  ( ( F `  k )  -  A ) )  <  -u A )
1614, 15syl 14 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  E. k  e.  Z  ( abs `  ( ( F `  k )  -  A
) )  <  -u A
)
17 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( abs `  (
( F `  k
)  -  A ) )  <  -u A
)
185ad2ant2r 509 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  e.  RR )
197adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  A  e.  RR )
208adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  -u A  e.  RR )
2118, 19, 20absdifltd 11431 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  -u A  <->  ( ( A  -  -u A
)  <  ( F `  k )  /\  ( F `  k )  <  ( A  +  -u A ) ) ) )
2217, 21mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( ( A  -  -u A )  < 
( F `  k
)  /\  ( F `  k )  <  ( A  +  -u A ) ) )
2322simprd 114 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  <  ( A  +  -u A ) )
2419recnd 8100 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  A  e.  CC )
2524negidd 8372 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( A  +  -u A )  =  0 )
2623, 25breqtrd 4069 . . . . 5  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  <  0
)
27 climge0.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
2827ad2ant2r 509 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  0  <_  ( F `  k )
)
29 0red 8072 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  0  e.  RR )
3029, 18lenltd 8189 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( 0  <_ 
( F `  k
)  <->  -.  ( F `  k )  <  0
) )
3128, 30mpbid 147 . . . . 5  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  -.  ( F `  k )  <  0
)
3226, 31pm2.21fal 1392 . . . 4  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  -> F.  )
3316, 32rexlimddv 2627 . . 3  |-  ( (
ph  /\  A  <  0 )  -> F.  )
3433inegd 1391 . 2  |-  ( ph  ->  -.  A  <  0
)
35 0re 8071 . . 3  |-  0  e.  RR
36 lenlt 8147 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
3735, 6, 36sylancr 414 . 2  |-  ( ph  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
3834, 37mpbird 167 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   F. wfal 1377    e. wcel 2175   A.wral 2483   E.wrex 2484   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   RRcr 7923   0cc0 7924    + caddc 7927    < clt 8106    <_ cle 8107    - cmin 8242   -ucneg 8243   ZZcz 9371   ZZ>=cuz 9647   abscabs 11250    ~~> cli 11531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532
This theorem is referenced by:  climle  11587
  Copyright terms: Public domain W3C validator