ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 Unicode version

Theorem climge0 11266
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1  |-  Z  =  ( ZZ>= `  M )
climrecl.2  |-  ( ph  ->  M  e.  ZZ )
climrecl.3  |-  ( ph  ->  F  ~~>  A )
climrecl.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climge0.5  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
Assertion
Ref Expression
climge0  |-  ( ph  ->  0  <_  A )
Distinct variable groups:    k, F    k, M    ph, k    k, Z    A, k

Proof of Theorem climge0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2 climrecl.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  M  e.  ZZ )
4 climrecl.3 . . . . . . . . . 10  |-  ( ph  ->  F  ~~>  A )
5 climrecl.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
61, 2, 4, 5climrecl 11265 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
76adantr 274 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  RR )
87renegcld 8278 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR )
96lt0neg1d 8413 . . . . . . . 8  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
109biimpa 294 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  0  <  -u A )
118, 10elrpd 9629 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR+ )
12 eqidd 2166 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
134adantr 274 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  F  ~~>  A )
141, 3, 11, 12, 13climi2 11229 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  -u A
)
151r19.2uz 10935 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  -u A  ->  E. k  e.  Z  ( abs `  ( ( F `  k )  -  A ) )  <  -u A )
1614, 15syl 14 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  E. k  e.  Z  ( abs `  ( ( F `  k )  -  A
) )  <  -u A
)
17 simprr 522 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( abs `  (
( F `  k
)  -  A ) )  <  -u A
)
185ad2ant2r 501 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  e.  RR )
197adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  A  e.  RR )
208adantr 274 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  -u A  e.  RR )
2118, 19, 20absdifltd 11120 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  -u A  <->  ( ( A  -  -u A
)  <  ( F `  k )  /\  ( F `  k )  <  ( A  +  -u A ) ) ) )
2217, 21mpbid 146 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( ( A  -  -u A )  < 
( F `  k
)  /\  ( F `  k )  <  ( A  +  -u A ) ) )
2322simprd 113 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  <  ( A  +  -u A ) )
2419recnd 7927 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  A  e.  CC )
2524negidd 8199 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( A  +  -u A )  =  0 )
2623, 25breqtrd 4008 . . . . 5  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  <  0
)
27 climge0.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
2827ad2ant2r 501 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  0  <_  ( F `  k )
)
29 0red 7900 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  0  e.  RR )
3029, 18lenltd 8016 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( 0  <_ 
( F `  k
)  <->  -.  ( F `  k )  <  0
) )
3128, 30mpbid 146 . . . . 5  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  -.  ( F `  k )  <  0
)
3226, 31pm2.21fal 1363 . . . 4  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  -> F.  )
3316, 32rexlimddv 2588 . . 3  |-  ( (
ph  /\  A  <  0 )  -> F.  )
3433inegd 1362 . 2  |-  ( ph  ->  -.  A  <  0
)
35 0re 7899 . . 3  |-  0  e.  RR
36 lenlt 7974 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
3735, 6, 36sylancr 411 . 2  |-  ( ph  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
3834, 37mpbird 166 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   F. wfal 1348    e. wcel 2136   A.wral 2444   E.wrex 2445   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753    + caddc 7756    < clt 7933    <_ cle 7934    - cmin 8069   -ucneg 8070   ZZcz 9191   ZZ>=cuz 9466   abscabs 10939    ~~> cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  climle  11275
  Copyright terms: Public domain W3C validator