ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climge0 Unicode version

Theorem climge0 11471
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
Hypotheses
Ref Expression
climrecl.1  |-  Z  =  ( ZZ>= `  M )
climrecl.2  |-  ( ph  ->  M  e.  ZZ )
climrecl.3  |-  ( ph  ->  F  ~~>  A )
climrecl.4  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climge0.5  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
Assertion
Ref Expression
climge0  |-  ( ph  ->  0  <_  A )
Distinct variable groups:    k, F    k, M    ph, k    k, Z    A, k

Proof of Theorem climge0
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climrecl.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
2 climrecl.2 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  M  e.  ZZ )
4 climrecl.3 . . . . . . . . . 10  |-  ( ph  ->  F  ~~>  A )
5 climrecl.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
61, 2, 4, 5climrecl 11470 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  A  <  0 )  ->  A  e.  RR )
87renegcld 8401 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR )
96lt0neg1d 8536 . . . . . . . 8  |-  ( ph  ->  ( A  <  0  <->  0  <  -u A ) )
109biimpa 296 . . . . . . 7  |-  ( (
ph  /\  A  <  0 )  ->  0  <  -u A )
118, 10elrpd 9762 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  -u A  e.  RR+ )
12 eqidd 2194 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
134adantr 276 . . . . . 6  |-  ( (
ph  /\  A  <  0 )  ->  F  ~~>  A )
141, 3, 11, 12, 13climi2 11434 . . . . 5  |-  ( (
ph  /\  A  <  0 )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  -u A
)
151r19.2uz 11140 . . . . 5  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  -u A  ->  E. k  e.  Z  ( abs `  ( ( F `  k )  -  A ) )  <  -u A )
1614, 15syl 14 . . . 4  |-  ( (
ph  /\  A  <  0 )  ->  E. k  e.  Z  ( abs `  ( ( F `  k )  -  A
) )  <  -u A
)
17 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( abs `  (
( F `  k
)  -  A ) )  <  -u A
)
185ad2ant2r 509 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  e.  RR )
197adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  A  e.  RR )
208adantr 276 . . . . . . . . 9  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  -u A  e.  RR )
2118, 19, 20absdifltd 11325 . . . . . . . 8  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  -u A  <->  ( ( A  -  -u A
)  <  ( F `  k )  /\  ( F `  k )  <  ( A  +  -u A ) ) ) )
2217, 21mpbid 147 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( ( A  -  -u A )  < 
( F `  k
)  /\  ( F `  k )  <  ( A  +  -u A ) ) )
2322simprd 114 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  <  ( A  +  -u A ) )
2419recnd 8050 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  A  e.  CC )
2524negidd 8322 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( A  +  -u A )  =  0 )
2623, 25breqtrd 4056 . . . . 5  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( F `  k )  <  0
)
27 climge0.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  Z )  ->  0  <_  ( F `  k
) )
2827ad2ant2r 509 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  0  <_  ( F `  k )
)
29 0red 8022 . . . . . . 7  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  0  e.  RR )
3029, 18lenltd 8139 . . . . . 6  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  ( 0  <_ 
( F `  k
)  <->  -.  ( F `  k )  <  0
) )
3128, 30mpbid 147 . . . . 5  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  ->  -.  ( F `  k )  <  0
)
3226, 31pm2.21fal 1384 . . . 4  |-  ( ( ( ph  /\  A  <  0 )  /\  (
k  e.  Z  /\  ( abs `  ( ( F `  k )  -  A ) )  <  -u A ) )  -> F.  )
3316, 32rexlimddv 2616 . . 3  |-  ( (
ph  /\  A  <  0 )  -> F.  )
3433inegd 1383 . 2  |-  ( ph  ->  -.  A  <  0
)
35 0re 8021 . . 3  |-  0  e.  RR
36 lenlt 8097 . . 3  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
3735, 6, 36sylancr 414 . 2  |-  ( ph  ->  ( 0  <_  A  <->  -.  A  <  0 ) )
3834, 37mpbird 167 1  |-  ( ph  ->  0  <_  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   F. wfal 1369    e. wcel 2164   A.wral 2472   E.wrex 2473   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   RRcr 7873   0cc0 7874    + caddc 7877    < clt 8056    <_ cle 8057    - cmin 8192   -ucneg 8193   ZZcz 9320   ZZ>=cuz 9595   abscabs 11144    ~~> cli 11424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-rp 9723  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425
This theorem is referenced by:  climle  11480
  Copyright terms: Public domain W3C validator