ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniqlem Unicode version

Theorem recvguniqlem 11338
Description: Lemma for recvguniq 11339. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
recvguniqlem.f  |-  ( ph  ->  F : NN --> RR )
recvguniqlem.a  |-  ( ph  ->  A  e.  RR )
recvguniqlem.b  |-  ( ph  ->  B  e.  RR )
recvguniqlem.k  |-  ( ph  ->  K  e.  NN )
recvguniqlem.lt1  |-  ( ph  ->  A  <  ( ( F `  K )  +  ( ( A  -  B )  / 
2 ) ) )
recvguniqlem.lt2  |-  ( ph  ->  ( F `  K
)  <  ( B  +  ( ( A  -  B )  / 
2 ) ) )
Assertion
Ref Expression
recvguniqlem  |-  ( ph  -> F.  )

Proof of Theorem recvguniqlem
StepHypRef Expression
1 recvguniqlem.a . . 3  |-  ( ph  ->  A  e.  RR )
2 recvguniqlem.f . . . . 5  |-  ( ph  ->  F : NN --> RR )
3 recvguniqlem.k . . . . 5  |-  ( ph  ->  K  e.  NN )
42, 3ffvelcdmd 5718 . . . 4  |-  ( ph  ->  ( F `  K
)  e.  RR )
5 recvguniqlem.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
61, 5resubcld 8455 . . . . 5  |-  ( ph  ->  ( A  -  B
)  e.  RR )
76rehalfcld 9286 . . . 4  |-  ( ph  ->  ( ( A  -  B )  /  2
)  e.  RR )
84, 7readdcld 8104 . . 3  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  e.  RR )
9 recvguniqlem.lt1 . . 3  |-  ( ph  ->  A  <  ( ( F `  K )  +  ( ( A  -  B )  / 
2 ) ) )
105, 7readdcld 8104 . . . . 5  |-  ( ph  ->  ( B  +  ( ( A  -  B
)  /  2 ) )  e.  RR )
11 recvguniqlem.lt2 . . . . 5  |-  ( ph  ->  ( F `  K
)  <  ( B  +  ( ( A  -  B )  / 
2 ) ) )
124, 10, 7, 11ltadd1dd 8631 . . . 4  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  <  ( ( B  +  ( ( A  -  B )  /  2 ) )  +  ( ( A  -  B )  / 
2 ) ) )
135recnd 8103 . . . . . 6  |-  ( ph  ->  B  e.  CC )
147recnd 8103 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  /  2
)  e.  CC )
1513, 14, 14addassd 8097 . . . . 5  |-  ( ph  ->  ( ( B  +  ( ( A  -  B )  /  2
) )  +  ( ( A  -  B
)  /  2 ) )  =  ( B  +  ( ( ( A  -  B )  /  2 )  +  ( ( A  -  B )  /  2
) ) ) )
166recnd 8103 . . . . . . 7  |-  ( ph  ->  ( A  -  B
)  e.  CC )
17162halvesd 9285 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  ( A  -  B ) )
1817oveq2d 5962 . . . . 5  |-  ( ph  ->  ( B  +  ( ( ( A  -  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( B  +  ( A  -  B ) ) )
191recnd 8103 . . . . . 6  |-  ( ph  ->  A  e.  CC )
2013, 19pncan3d 8388 . . . . 5  |-  ( ph  ->  ( B  +  ( A  -  B ) )  =  A )
2115, 18, 203eqtrd 2242 . . . 4  |-  ( ph  ->  ( ( B  +  ( ( A  -  B )  /  2
) )  +  ( ( A  -  B
)  /  2 ) )  =  A )
2212, 21breqtrd 4071 . . 3  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  <  A )
231, 8, 1, 9, 22lttrd 8200 . 2  |-  ( ph  ->  A  <  A )
241ltnrd 8186 . 2  |-  ( ph  ->  -.  A  <  A
)
2523, 24pm2.21fal 1393 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F. wfal 1378    e. wcel 2176   class class class wbr 4045   -->wf 5268   ` cfv 5272  (class class class)co 5946   RRcr 7926    + caddc 7930    < clt 8109    - cmin 8245    / cdiv 8747   NNcn 9038   2c2 9089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-2 9097
This theorem is referenced by:  recvguniq  11339
  Copyright terms: Public domain W3C validator