ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniqlem Unicode version

Theorem recvguniqlem 10790
Description: Lemma for recvguniq 10791. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
recvguniqlem.f  |-  ( ph  ->  F : NN --> RR )
recvguniqlem.a  |-  ( ph  ->  A  e.  RR )
recvguniqlem.b  |-  ( ph  ->  B  e.  RR )
recvguniqlem.k  |-  ( ph  ->  K  e.  NN )
recvguniqlem.lt1  |-  ( ph  ->  A  <  ( ( F `  K )  +  ( ( A  -  B )  / 
2 ) ) )
recvguniqlem.lt2  |-  ( ph  ->  ( F `  K
)  <  ( B  +  ( ( A  -  B )  / 
2 ) ) )
Assertion
Ref Expression
recvguniqlem  |-  ( ph  -> F.  )

Proof of Theorem recvguniqlem
StepHypRef Expression
1 recvguniqlem.a . . 3  |-  ( ph  ->  A  e.  RR )
2 recvguniqlem.f . . . . 5  |-  ( ph  ->  F : NN --> RR )
3 recvguniqlem.k . . . . 5  |-  ( ph  ->  K  e.  NN )
42, 3ffvelrnd 5559 . . . 4  |-  ( ph  ->  ( F `  K
)  e.  RR )
5 recvguniqlem.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
61, 5resubcld 8162 . . . . 5  |-  ( ph  ->  ( A  -  B
)  e.  RR )
76rehalfcld 8985 . . . 4  |-  ( ph  ->  ( ( A  -  B )  /  2
)  e.  RR )
84, 7readdcld 7814 . . 3  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  e.  RR )
9 recvguniqlem.lt1 . . 3  |-  ( ph  ->  A  <  ( ( F `  K )  +  ( ( A  -  B )  / 
2 ) ) )
105, 7readdcld 7814 . . . . 5  |-  ( ph  ->  ( B  +  ( ( A  -  B
)  /  2 ) )  e.  RR )
11 recvguniqlem.lt2 . . . . 5  |-  ( ph  ->  ( F `  K
)  <  ( B  +  ( ( A  -  B )  / 
2 ) ) )
124, 10, 7, 11ltadd1dd 8337 . . . 4  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  <  ( ( B  +  ( ( A  -  B )  /  2 ) )  +  ( ( A  -  B )  / 
2 ) ) )
135recnd 7813 . . . . . 6  |-  ( ph  ->  B  e.  CC )
147recnd 7813 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  /  2
)  e.  CC )
1513, 14, 14addassd 7807 . . . . 5  |-  ( ph  ->  ( ( B  +  ( ( A  -  B )  /  2
) )  +  ( ( A  -  B
)  /  2 ) )  =  ( B  +  ( ( ( A  -  B )  /  2 )  +  ( ( A  -  B )  /  2
) ) ) )
166recnd 7813 . . . . . . 7  |-  ( ph  ->  ( A  -  B
)  e.  CC )
17162halvesd 8984 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  ( A  -  B ) )
1817oveq2d 5793 . . . . 5  |-  ( ph  ->  ( B  +  ( ( ( A  -  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( B  +  ( A  -  B ) ) )
191recnd 7813 . . . . . 6  |-  ( ph  ->  A  e.  CC )
2013, 19pncan3d 8095 . . . . 5  |-  ( ph  ->  ( B  +  ( A  -  B ) )  =  A )
2115, 18, 203eqtrd 2176 . . . 4  |-  ( ph  ->  ( ( B  +  ( ( A  -  B )  /  2
) )  +  ( ( A  -  B
)  /  2 ) )  =  A )
2212, 21breqtrd 3957 . . 3  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  <  A )
231, 8, 1, 9, 22lttrd 7907 . 2  |-  ( ph  ->  A  <  A )
241ltnrd 7894 . 2  |-  ( ph  ->  -.  A  <  A
)
2523, 24pm2.21fal 1351 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F. wfal 1336    e. wcel 1480   class class class wbr 3932   -->wf 5122   ` cfv 5126  (class class class)co 5777   RRcr 7638    + caddc 7642    < clt 7819    - cmin 7952    / cdiv 8451   NNcn 8739   2c2 8790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4049  ax-pow 4101  ax-pr 4134  ax-un 4358  ax-setind 4455  ax-cnex 7730  ax-resscn 7731  ax-1cn 7732  ax-1re 7733  ax-icn 7734  ax-addcl 7735  ax-addrcl 7736  ax-mulcl 7737  ax-mulrcl 7738  ax-addcom 7739  ax-mulcom 7740  ax-addass 7741  ax-mulass 7742  ax-distr 7743  ax-i2m1 7744  ax-0lt1 7745  ax-1rid 7746  ax-0id 7747  ax-rnegex 7748  ax-precex 7749  ax-cnre 7750  ax-pre-ltirr 7751  ax-pre-ltwlin 7752  ax-pre-lttrn 7753  ax-pre-apti 7754  ax-pre-ltadd 7755  ax-pre-mulgt0 7756  ax-pre-mulext 7757
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3740  df-br 3933  df-opab 3993  df-id 4218  df-po 4221  df-iso 4222  df-xp 4548  df-rel 4549  df-cnv 4550  df-co 4551  df-dm 4552  df-rn 4553  df-iota 5091  df-fun 5128  df-fn 5129  df-f 5130  df-fv 5134  df-riota 5733  df-ov 5780  df-oprab 5781  df-mpo 5782  df-pnf 7821  df-mnf 7822  df-xr 7823  df-ltxr 7824  df-le 7825  df-sub 7954  df-neg 7955  df-reap 8356  df-ap 8363  df-div 8452  df-2 8798
This theorem is referenced by:  recvguniq  10791
  Copyright terms: Public domain W3C validator