ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recvguniqlem Unicode version

Theorem recvguniqlem 11159
Description: Lemma for recvguniq 11160. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
Hypotheses
Ref Expression
recvguniqlem.f  |-  ( ph  ->  F : NN --> RR )
recvguniqlem.a  |-  ( ph  ->  A  e.  RR )
recvguniqlem.b  |-  ( ph  ->  B  e.  RR )
recvguniqlem.k  |-  ( ph  ->  K  e.  NN )
recvguniqlem.lt1  |-  ( ph  ->  A  <  ( ( F `  K )  +  ( ( A  -  B )  / 
2 ) ) )
recvguniqlem.lt2  |-  ( ph  ->  ( F `  K
)  <  ( B  +  ( ( A  -  B )  / 
2 ) ) )
Assertion
Ref Expression
recvguniqlem  |-  ( ph  -> F.  )

Proof of Theorem recvguniqlem
StepHypRef Expression
1 recvguniqlem.a . . 3  |-  ( ph  ->  A  e.  RR )
2 recvguniqlem.f . . . . 5  |-  ( ph  ->  F : NN --> RR )
3 recvguniqlem.k . . . . 5  |-  ( ph  ->  K  e.  NN )
42, 3ffvelcdmd 5698 . . . 4  |-  ( ph  ->  ( F `  K
)  e.  RR )
5 recvguniqlem.b . . . . . 6  |-  ( ph  ->  B  e.  RR )
61, 5resubcld 8407 . . . . 5  |-  ( ph  ->  ( A  -  B
)  e.  RR )
76rehalfcld 9238 . . . 4  |-  ( ph  ->  ( ( A  -  B )  /  2
)  e.  RR )
84, 7readdcld 8056 . . 3  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  e.  RR )
9 recvguniqlem.lt1 . . 3  |-  ( ph  ->  A  <  ( ( F `  K )  +  ( ( A  -  B )  / 
2 ) ) )
105, 7readdcld 8056 . . . . 5  |-  ( ph  ->  ( B  +  ( ( A  -  B
)  /  2 ) )  e.  RR )
11 recvguniqlem.lt2 . . . . 5  |-  ( ph  ->  ( F `  K
)  <  ( B  +  ( ( A  -  B )  / 
2 ) ) )
124, 10, 7, 11ltadd1dd 8583 . . . 4  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  <  ( ( B  +  ( ( A  -  B )  /  2 ) )  +  ( ( A  -  B )  / 
2 ) ) )
135recnd 8055 . . . . . 6  |-  ( ph  ->  B  e.  CC )
147recnd 8055 . . . . . 6  |-  ( ph  ->  ( ( A  -  B )  /  2
)  e.  CC )
1513, 14, 14addassd 8049 . . . . 5  |-  ( ph  ->  ( ( B  +  ( ( A  -  B )  /  2
) )  +  ( ( A  -  B
)  /  2 ) )  =  ( B  +  ( ( ( A  -  B )  /  2 )  +  ( ( A  -  B )  /  2
) ) ) )
166recnd 8055 . . . . . . 7  |-  ( ph  ->  ( A  -  B
)  e.  CC )
17162halvesd 9237 . . . . . 6  |-  ( ph  ->  ( ( ( A  -  B )  / 
2 )  +  ( ( A  -  B
)  /  2 ) )  =  ( A  -  B ) )
1817oveq2d 5938 . . . . 5  |-  ( ph  ->  ( B  +  ( ( ( A  -  B )  /  2
)  +  ( ( A  -  B )  /  2 ) ) )  =  ( B  +  ( A  -  B ) ) )
191recnd 8055 . . . . . 6  |-  ( ph  ->  A  e.  CC )
2013, 19pncan3d 8340 . . . . 5  |-  ( ph  ->  ( B  +  ( A  -  B ) )  =  A )
2115, 18, 203eqtrd 2233 . . . 4  |-  ( ph  ->  ( ( B  +  ( ( A  -  B )  /  2
) )  +  ( ( A  -  B
)  /  2 ) )  =  A )
2212, 21breqtrd 4059 . . 3  |-  ( ph  ->  ( ( F `  K )  +  ( ( A  -  B
)  /  2 ) )  <  A )
231, 8, 1, 9, 22lttrd 8152 . 2  |-  ( ph  ->  A  <  A )
241ltnrd 8138 . 2  |-  ( ph  ->  -.  A  <  A
)
2523, 24pm2.21fal 1384 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4   F. wfal 1369    e. wcel 2167   class class class wbr 4033   -->wf 5254   ` cfv 5258  (class class class)co 5922   RRcr 7878    + caddc 7882    < clt 8061    - cmin 8197    / cdiv 8699   NNcn 8990   2c2 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-2 9049
This theorem is referenced by:  recvguniq  11160
  Copyright terms: Public domain W3C validator