ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leabs Unicode version

Theorem leabs 10472
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
leabs  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )

Proof of Theorem leabs
StepHypRef Expression
1 simpr 108 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  ( abs `  A
)  <  0 )
2 recn 7454 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
3 absge0 10458 . . . . . . . 8  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
42, 3syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  0  <_  ( abs `  A
) )
54ad2antrr 472 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  0  <_  ( abs `  A ) )
6 0red 7468 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  0  e.  RR )
7 abscl 10449 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
82, 7syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  A )  e.  RR )
98ad2antrr 472 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  ( abs `  A
)  e.  RR )
106, 9lenltd 7580 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  ( 0  <_ 
( abs `  A
)  <->  -.  ( abs `  A )  <  0
) )
115, 10mpbid 145 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  -.  ( abs `  A )  <  0
)
121, 11pm2.21fal 1309 . . . 4  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  -> F.  )
13 simpll 496 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  A  e.  RR )
14 0red 7468 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  0  e.  RR )
15 simpr 108 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  0  <  A
)
1614, 13, 15ltled 7581 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  0  <_  A
)
17 absid 10469 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )
1813, 16, 17syl2anc 403 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  ( abs `  A
)  =  A )
19 simplr 497 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  ( abs `  A
)  <  A )
2018, 19eqbrtrrd 3859 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  A  <  A
)
2113ltnrd 7575 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  -.  A  <  A )
2220, 21pm2.21fal 1309 . . . 4  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  -> F.  )
23 0re 7467 . . . . . . 7  |-  0  e.  RR
24 axltwlin 7533 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR  /\  A  e.  RR  /\  0  e.  RR )  ->  (
( abs `  A
)  <  A  ->  ( ( abs `  A
)  <  0  \/  0  <  A ) ) )
2523, 24mp3an3 1262 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR  /\  A  e.  RR )  ->  ( ( abs `  A
)  <  A  ->  ( ( abs `  A
)  <  0  \/  0  <  A ) ) )
268, 25mpancom 413 . . . . 5  |-  ( A  e.  RR  ->  (
( abs `  A
)  <  A  ->  ( ( abs `  A
)  <  0  \/  0  <  A ) ) )
2726imp 122 . . . 4  |-  ( ( A  e.  RR  /\  ( abs `  A )  <  A )  -> 
( ( abs `  A
)  <  0  \/  0  <  A ) )
2812, 22, 27mpjaodan 747 . . 3  |-  ( ( A  e.  RR  /\  ( abs `  A )  <  A )  -> F.  )
2928inegd 1308 . 2  |-  ( A  e.  RR  ->  -.  ( abs `  A )  <  A )
30 id 19 . . 3  |-  ( A  e.  RR  ->  A  e.  RR )
3130, 8lenltd 7580 . 2  |-  ( A  e.  RR  ->  ( A  <_  ( abs `  A
)  <->  -.  ( abs `  A )  <  A
) )
3229, 31mpbird 165 1  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    \/ wo 664    = wceq 1289   F. wfal 1294    e. wcel 1438   class class class wbr 3837   ` cfv 5002   CCcc 7327   RRcr 7328   0cc0 7329    < clt 7501    <_ cle 7502   abscabs 10395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3946  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-iinf 4393  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442  ax-arch 7443  ax-caucvg 7444
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-if 3390  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-tr 3929  df-id 4111  df-po 4114  df-iso 4115  df-iord 4184  df-on 4186  df-ilim 4187  df-suc 4189  df-iom 4396  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-f1 5007  df-fo 5008  df-f1o 5009  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-recs 6052  df-frec 6138  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-2 8452  df-3 8453  df-4 8454  df-n0 8644  df-z 8721  df-uz 8989  df-rp 9104  df-iseq 9818  df-seq3 9819  df-exp 9920  df-cj 10241  df-re 10242  df-im 10243  df-rsqrt 10396  df-abs 10397
This theorem is referenced by:  abslt  10486  absle  10487  abssubap0  10488  releabs  10494  leabsi  10526  leabsd  10559  dfabsmax  10615
  Copyright terms: Public domain W3C validator