ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leabs Unicode version

Theorem leabs 10732
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005.)
Assertion
Ref Expression
leabs  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )

Proof of Theorem leabs
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  ( abs `  A
)  <  0 )
2 recn 7671 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
3 absge0 10718 . . . . . . . 8  |-  ( A  e.  CC  ->  0  <_  ( abs `  A
) )
42, 3syl 14 . . . . . . 7  |-  ( A  e.  RR  ->  0  <_  ( abs `  A
) )
54ad2antrr 477 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  0  <_  ( abs `  A ) )
6 0red 7685 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  0  e.  RR )
7 abscl 10709 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
82, 7syl 14 . . . . . . . 8  |-  ( A  e.  RR  ->  ( abs `  A )  e.  RR )
98ad2antrr 477 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  ( abs `  A
)  e.  RR )
106, 9lenltd 7797 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  ( 0  <_ 
( abs `  A
)  <->  -.  ( abs `  A )  <  0
) )
115, 10mpbid 146 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  ->  -.  ( abs `  A )  <  0
)
121, 11pm2.21fal 1332 . . . 4  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  ( abs `  A
)  <  0 )  -> F.  )
13 simpll 501 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  A  e.  RR )
14 0red 7685 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  0  e.  RR )
15 simpr 109 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  0  <  A
)
1614, 13, 15ltled 7798 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  0  <_  A
)
17 absid 10729 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <_  A )  -> 
( abs `  A
)  =  A )
1813, 16, 17syl2anc 406 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  ( abs `  A
)  =  A )
19 simplr 502 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  ( abs `  A
)  <  A )
2018, 19eqbrtrrd 3915 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  A  <  A
)
2113ltnrd 7792 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  ->  -.  A  <  A )
2220, 21pm2.21fal 1332 . . . 4  |-  ( ( ( A  e.  RR  /\  ( abs `  A
)  <  A )  /\  0  <  A )  -> F.  )
23 0re 7684 . . . . . . 7  |-  0  e.  RR
24 axltwlin 7750 . . . . . . 7  |-  ( ( ( abs `  A
)  e.  RR  /\  A  e.  RR  /\  0  e.  RR )  ->  (
( abs `  A
)  <  A  ->  ( ( abs `  A
)  <  0  \/  0  <  A ) ) )
2523, 24mp3an3 1285 . . . . . 6  |-  ( ( ( abs `  A
)  e.  RR  /\  A  e.  RR )  ->  ( ( abs `  A
)  <  A  ->  ( ( abs `  A
)  <  0  \/  0  <  A ) ) )
268, 25mpancom 416 . . . . 5  |-  ( A  e.  RR  ->  (
( abs `  A
)  <  A  ->  ( ( abs `  A
)  <  0  \/  0  <  A ) ) )
2726imp 123 . . . 4  |-  ( ( A  e.  RR  /\  ( abs `  A )  <  A )  -> 
( ( abs `  A
)  <  0  \/  0  <  A ) )
2812, 22, 27mpjaodan 770 . . 3  |-  ( ( A  e.  RR  /\  ( abs `  A )  <  A )  -> F.  )
2928inegd 1331 . 2  |-  ( A  e.  RR  ->  -.  ( abs `  A )  <  A )
30 id 19 . . 3  |-  ( A  e.  RR  ->  A  e.  RR )
3130, 8lenltd 7797 . 2  |-  ( A  e.  RR  ->  ( A  <_  ( abs `  A
)  <->  -.  ( abs `  A )  <  A
) )
3229, 31mpbird 166 1  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680    = wceq 1312   F. wfal 1317    e. wcel 1461   class class class wbr 3893   ` cfv 5079   CCcc 7539   RRcr 7540   0cc0 7541    < clt 7718    <_ cle 7719   abscabs 10655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657  ax-arch 7658  ax-caucvg 7659
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-3 8684  df-4 8685  df-n0 8876  df-z 8953  df-uz 9223  df-rp 9338  df-seqfrec 10106  df-exp 10180  df-cj 10501  df-re 10502  df-im 10503  df-rsqrt 10656  df-abs 10657
This theorem is referenced by:  abslt  10746  absle  10747  abssubap0  10748  releabs  10754  leabsi  10786  leabsd  10819  dfabsmax  10875
  Copyright terms: Public domain W3C validator