ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem Unicode version

Theorem isprm5lem 12124
Description: Lemma for isprm5 12125. The interesting direction (showing that one only needs to check prime divisors up to the square root of  P). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
isprm5lem.z  |-  ( ph  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
isprm5lem.x  |-  ( ph  ->  X  e.  ( 2 ... ( P  - 
1 ) ) )
Assertion
Ref Expression
isprm5lem  |-  ( ph  ->  -.  X  ||  P
)
Distinct variable groups:    z, P    z, X
Allowed substitution hint:    ph( z)

Proof of Theorem isprm5lem
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3  |-  ( ph  ->  X  e.  ( 2 ... ( P  - 
1 ) ) )
2 elfzuz 10007 . . 3  |-  ( X  e.  ( 2 ... ( P  -  1 ) )  ->  X  e.  ( ZZ>= `  2 )
)
3 exprmfct 12121 . . 3  |-  ( X  e.  ( ZZ>= `  2
)  ->  E. y  e.  Prime  y  ||  X
)
41, 2, 33syl 17 . 2  |-  ( ph  ->  E. y  e.  Prime  y 
||  X )
5 simpr 110 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  ( y ^ 2 )  <_  P )
6 oveq1 5876 . . . . . . . 8  |-  ( z  =  y  ->  (
z ^ 2 )  =  ( y ^
2 ) )
76breq1d 4010 . . . . . . 7  |-  ( z  =  y  ->  (
( z ^ 2 )  <_  P  <->  ( y ^ 2 )  <_  P ) )
8 breq1 4003 . . . . . . . 8  |-  ( z  =  y  ->  (
z  ||  P  <->  y  ||  P ) )
98notbid 667 . . . . . . 7  |-  ( z  =  y  ->  ( -.  z  ||  P  <->  -.  y  ||  P ) )
107, 9imbi12d 234 . . . . . 6  |-  ( z  =  y  ->  (
( ( z ^
2 )  <_  P  ->  -.  z  ||  P
)  <->  ( ( y ^ 2 )  <_  P  ->  -.  y  ||  P ) ) )
11 isprm5lem.z . . . . . . 7  |-  ( ph  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
1211ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
13 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  y  e.  Prime )
1410, 12, 13rspcdva 2846 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  ( ( y ^
2 )  <_  P  ->  -.  y  ||  P
) )
155, 14mpd 13 . . . 4  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  -.  y  ||  P
)
16 prmz 12094 . . . . . . 7  |-  ( y  e.  Prime  ->  y  e.  ZZ )
1716ad2antrl 490 . . . . . 6  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  e.  ZZ )
1817ad2antrr 488 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  y  e.  ZZ )
19 elfzelz 10011 . . . . . . . 8  |-  ( X  e.  ( 2 ... ( P  -  1 ) )  ->  X  e.  ZZ )
201, 19syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  ZZ )
2120ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  X  ||  P )  ->  X  e.  ZZ )
2221adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  X  e.  ZZ )
23 isprm5lem.p . . . . . . . 8  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
24 eluzelz 9526 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  ZZ )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  X  ||  P )  ->  P  e.  ZZ )
2726adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  P  e.  ZZ )
28 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  X  ||  P )  -> 
y  ||  X )
2928adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  y  ||  X )
30 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  X  ||  P )
3118, 22, 27, 29, 30dvdstrd 11821 . . . 4  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  y  ||  P )
3215, 31mtand 665 . . 3  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  -.  X  ||  P
)
3317ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  y  e.  ZZ )
3421adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  X  e.  ZZ )
3525adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  ->  P  e.  ZZ )
3635ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  P  e.  ZZ )
3728adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  y  ||  X )
38 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  X  ||  P )
3933, 34, 36, 37, 38dvdstrd 11821 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  y  ||  P )
4017adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  ZZ )
41 prmnn 12093 . . . . . . . . . . . . 13  |-  ( y  e.  Prime  ->  y  e.  NN )
4241nnne0d 8953 . . . . . . . . . . . 12  |-  ( y  e.  Prime  ->  y  =/=  0 )
4342ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  =/=  0 )
4443adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  =/=  0 )
4525ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  ZZ )
46 dvdsval2 11781 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  P  e.  ZZ )  ->  (
y  ||  P  <->  ( P  /  y )  e.  ZZ ) )
4740, 44, 45, 46syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y  ||  P  <->  ( P  /  y )  e.  ZZ ) )
4847adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  (
y  ||  P  <->  ( P  /  y )  e.  ZZ ) )
4939, 48mpbid 147 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  ( P  /  y )  e.  ZZ )
5040zred 9364 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  RR )
5150recnd 7976 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  CC )
5251mulid2d 7966 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( 1  x.  y
)  =  y )
53 2nn 9069 . . . . . . . . . . . . . . 15  |-  2  e.  NN
54 fzssnn 10054 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN  ->  (
2 ... ( P  - 
1 ) )  C_  NN )
5553, 54ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
5655, 1sselid 3153 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  NN )
5756ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  X  e.  NN )
5857nnred 8921 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  X  e.  RR )
5925zred 9364 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  RR )
6059ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  RR )
61 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  ||  X )
62 dvdsle 11833 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  X  e.  NN )  ->  ( y  ||  X  ->  y  <_  X )
)
6340, 57, 62syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y  ||  X  ->  y  <_  X )
)
6461, 63mpd 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  <_  X )
65 elfzle2 10014 . . . . . . . . . . . . . 14  |-  ( X  e.  ( 2 ... ( P  -  1 ) )  ->  X  <_  ( P  -  1 ) )
661, 65syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  X  <_  ( P  -  1 ) )
67 zltlem1 9299 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ZZ  /\  P  e.  ZZ )  ->  ( X  <  P  <->  X  <_  ( P  - 
1 ) ) )
6820, 25, 67syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  <  P  <->  X  <_  ( P  - 
1 ) ) )
6966, 68mpbird 167 . . . . . . . . . . . 12  |-  ( ph  ->  X  <  P )
7069ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  X  <  P )
7150, 58, 60, 64, 70lelttrd 8072 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  <  P )
7252, 71eqbrtrd 4022 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( 1  x.  y
)  <  P )
73 1red 7963 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
1  e.  RR )
7441nnrpd 9681 . . . . . . . . . . . 12  |-  ( y  e.  Prime  ->  y  e.  RR+ )
7574ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  e.  RR+ )
7675adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  RR+ )
7773, 60, 76ltmuldivd 9731 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( 1  x.  y )  <  P  <->  1  <  ( P  / 
y ) ) )
7872, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
1  <  ( P  /  y ) )
7978adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  1  <  ( P  /  y
) )
80 eluz2b1 9590 . . . . . . 7  |-  ( ( P  /  y )  e.  ( ZZ>= `  2
)  <->  ( ( P  /  y )  e.  ZZ  /\  1  < 
( P  /  y
) ) )
8149, 79, 80sylanbrc 417 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  ( P  /  y )  e.  ( ZZ>= `  2 )
)
82 exprmfct 12121 . . . . . 6  |-  ( ( P  /  y )  e.  ( ZZ>= `  2
)  ->  E. w  e.  Prime  w  ||  ( P  /  y ) )
8381, 82syl 14 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  E. w  e.  Prime  w  ||  ( P  /  y ) )
84 prmz 12094 . . . . . . . 8  |-  ( w  e.  Prime  ->  w  e.  ZZ )
8584ad2antrl 490 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  e.  ZZ )
8649adantr 276 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  ZZ )
8745ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  P  e.  ZZ )
88 simprr 531 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  ||  ( P  / 
y ) )
8939adantr 276 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
y  ||  P )
9044ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
y  =/=  0 )
91 divconjdvds 11838 . . . . . . . 8  |-  ( ( y  ||  P  /\  y  =/=  0 )  -> 
( P  /  y
)  ||  P )
9289, 90, 91syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  ||  P )
9385, 86, 87, 88, 92dvdstrd 11821 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  ||  P )
9485zred 9364 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  e.  RR )
9594resqcld 10665 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  e.  RR )
9660ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  P  e.  RR )
9781adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  ( ZZ>= ` 
2 ) )
98 eluz2nn 9555 . . . . . . . . . . . 12  |-  ( ( P  /  y )  e.  ( ZZ>= `  2
)  ->  ( P  /  y )  e.  NN )
9997, 98syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  NN )
10099nnred 8921 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  RR )
101100resqcld 10665 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( ( P  / 
y ) ^ 2 )  e.  RR )
102 dvdsle 11833 . . . . . . . . . . . 12  |-  ( ( w  e.  ZZ  /\  ( P  /  y
)  e.  NN )  ->  ( w  ||  ( P  /  y
)  ->  w  <_  ( P  /  y ) ) )
10385, 99, 102syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w  ||  ( P  /  y )  ->  w  <_  ( P  / 
y ) ) )
10488, 103mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  <_  ( P  / 
y ) )
105 prmnn 12093 . . . . . . . . . . . . . 14  |-  ( w  e.  Prime  ->  w  e.  NN )
106105nnnn0d 9218 . . . . . . . . . . . . 13  |-  ( w  e.  Prime  ->  w  e. 
NN0 )
107106nn0ge0d 9221 . . . . . . . . . . . 12  |-  ( w  e.  Prime  ->  0  <_  w )
108107ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  <_  w )
109 0red 7949 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  e.  RR )
110 1red 7963 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
1  e.  RR )
111 0le1 8428 . . . . . . . . . . . . 13  |-  0  <_  1
112111a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  <_  1 )
11399nnge1d 8951 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
1  <_  ( P  /  y ) )
114109, 110, 100, 112, 113letrd 8071 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  <_  ( P  /  y ) )
11594, 100, 108, 114le2sqd 10671 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w  <_  ( P  /  y )  <->  ( w ^ 2 )  <_ 
( ( P  / 
y ) ^ 2 ) ) )
116104, 115mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  <_  ( ( P  /  y ) ^
2 ) )
11760recnd 7976 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  CC )
11841ad2antrl 490 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  e.  NN )
119118adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  NN )
120119nnap0d 8954 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y #  0 )
121117, 51, 120sqdivapd 10652 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( P  / 
y ) ^ 2 )  =  ( ( P ^ 2 )  /  ( y ^
2 ) ) )
122117sqvald 10636 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P ^ 2 )  =  ( P  x.  P ) )
12350resqcld 10665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y ^ 2 )  e.  RR )
124 eluz2nn 9555 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
12523, 124syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  NN )
126125nnrpd 9681 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  RR+ )
127126ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  RR+ )
128 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  <  ( y ^
2 ) )
12960, 123, 127, 128ltmul2dd 9740 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P  x.  P
)  <  ( P  x.  ( y ^ 2 ) ) )
130122, 129eqbrtrd 4022 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P ^ 2 )  <  ( P  x.  ( y ^
2 ) ) )
13160resqcld 10665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P ^ 2 )  e.  RR )
132119nnsqcld 10660 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y ^ 2 )  e.  NN )
133132nnrpd 9681 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y ^ 2 )  e.  RR+ )
134131, 60, 133ltdivmul2d 9736 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( ( P ^ 2 )  / 
( y ^ 2 ) )  <  P  <->  ( P ^ 2 )  <  ( P  x.  ( y ^ 2 ) ) ) )
135130, 134mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( P ^
2 )  /  (
y ^ 2 ) )  <  P )
136121, 135eqbrtrd 4022 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( P  / 
y ) ^ 2 )  <  P )
137136ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( ( P  / 
y ) ^ 2 )  <  P )
13895, 101, 96, 116, 137lelttrd 8072 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  <  P )
13995, 96, 138ltled 8066 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  <_  P )
140 oveq1 5876 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z ^ 2 )  =  ( w ^
2 ) )
141140breq1d 4010 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z ^ 2 )  <_  P  <->  ( w ^ 2 )  <_  P ) )
142 breq1 4003 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  P  <->  w  ||  P
) )
143142notbid 667 . . . . . . . . 9  |-  ( z  =  w  ->  ( -.  z  ||  P  <->  -.  w  ||  P ) )
144141, 143imbi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( ( z ^
2 )  <_  P  ->  -.  z  ||  P
)  <->  ( ( w ^ 2 )  <_  P  ->  -.  w  ||  P
) ) )
14511ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
146 simprl 529 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  e.  Prime )
147144, 145, 146rspcdva 2846 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( ( w ^
2 )  <_  P  ->  -.  w  ||  P
) )
148139, 147mpd 13 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  -.  w  ||  P )
14993, 148pm2.21fal 1373 . . . . 5  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> F.  )
15083, 149rexlimddv 2599 . . . 4  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  -> F.  )
151150inegd 1372 . . 3  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  -.  X  ||  P )
152 zsqcl 10576 . . . . 5  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
15317, 152syl 14 . . . 4  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
( y ^ 2 )  e.  ZZ )
154 zlelttric 9287 . . . 4  |-  ( ( ( y ^ 2 )  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( y ^
2 )  <_  P  \/  P  <  ( y ^ 2 ) ) )
155153, 35, 154syl2anc 411 . . 3  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
( ( y ^
2 )  <_  P  \/  P  <  ( y ^ 2 ) ) )
15632, 151, 155mpjaodan 798 . 2  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  ->  -.  X  ||  P )
1574, 156rexlimddv 2599 1  |-  ( ph  ->  -.  X  ||  P
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708   F. wfal 1358    e. wcel 2148    =/= wne 2347   A.wral 2455   E.wrex 2456    C_ wss 3129   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801   0cc0 7802   1c1 7803    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118    / cdiv 8618   NNcn 8908   2c2 8959   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640   ...cfz 9995   ^cexp 10505    || cdvds 11778   Primecprime 12090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-prm 12091
This theorem is referenced by:  isprm5  12125
  Copyright terms: Public domain W3C validator