ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm5lem Unicode version

Theorem isprm5lem 12334
Description: Lemma for isprm5 12335. The interesting direction (showing that one only needs to check prime divisors up to the square root of  P). (Contributed by Jim Kingdon, 20-Oct-2024.)
Hypotheses
Ref Expression
isprm5lem.p  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
isprm5lem.z  |-  ( ph  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
isprm5lem.x  |-  ( ph  ->  X  e.  ( 2 ... ( P  - 
1 ) ) )
Assertion
Ref Expression
isprm5lem  |-  ( ph  ->  -.  X  ||  P
)
Distinct variable groups:    z, P    z, X
Allowed substitution hint:    ph( z)

Proof of Theorem isprm5lem
Dummy variables  w  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isprm5lem.x . . 3  |-  ( ph  ->  X  e.  ( 2 ... ( P  - 
1 ) ) )
2 elfzuz 10113 . . 3  |-  ( X  e.  ( 2 ... ( P  -  1 ) )  ->  X  e.  ( ZZ>= `  2 )
)
3 exprmfct 12331 . . 3  |-  ( X  e.  ( ZZ>= `  2
)  ->  E. y  e.  Prime  y  ||  X
)
41, 2, 33syl 17 . 2  |-  ( ph  ->  E. y  e.  Prime  y 
||  X )
5 simpr 110 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  ( y ^ 2 )  <_  P )
6 oveq1 5932 . . . . . . . 8  |-  ( z  =  y  ->  (
z ^ 2 )  =  ( y ^
2 ) )
76breq1d 4044 . . . . . . 7  |-  ( z  =  y  ->  (
( z ^ 2 )  <_  P  <->  ( y ^ 2 )  <_  P ) )
8 breq1 4037 . . . . . . . 8  |-  ( z  =  y  ->  (
z  ||  P  <->  y  ||  P ) )
98notbid 668 . . . . . . 7  |-  ( z  =  y  ->  ( -.  z  ||  P  <->  -.  y  ||  P ) )
107, 9imbi12d 234 . . . . . 6  |-  ( z  =  y  ->  (
( ( z ^
2 )  <_  P  ->  -.  z  ||  P
)  <->  ( ( y ^ 2 )  <_  P  ->  -.  y  ||  P ) ) )
11 isprm5lem.z . . . . . . 7  |-  ( ph  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
1211ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
13 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  y  e.  Prime )
1410, 12, 13rspcdva 2873 . . . . 5  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  ( ( y ^
2 )  <_  P  ->  -.  y  ||  P
) )
155, 14mpd 13 . . . 4  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  -.  y  ||  P
)
16 prmz 12304 . . . . . . 7  |-  ( y  e.  Prime  ->  y  e.  ZZ )
1716ad2antrl 490 . . . . . 6  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  e.  ZZ )
1817ad2antrr 488 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  y  e.  ZZ )
19 elfzelz 10117 . . . . . . . 8  |-  ( X  e.  ( 2 ... ( P  -  1 ) )  ->  X  e.  ZZ )
201, 19syl 14 . . . . . . 7  |-  ( ph  ->  X  e.  ZZ )
2120ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  X  ||  P )  ->  X  e.  ZZ )
2221adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  X  e.  ZZ )
23 isprm5lem.p . . . . . . . 8  |-  ( ph  ->  P  e.  ( ZZ>= ` 
2 ) )
24 eluzelz 9627 . . . . . . . 8  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
2523, 24syl 14 . . . . . . 7  |-  ( ph  ->  P  e.  ZZ )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  X  ||  P )  ->  P  e.  ZZ )
2726adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  P  e.  ZZ )
28 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  X  ||  P )  -> 
y  ||  X )
2928adantlr 477 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  y  ||  X )
30 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  X  ||  P )
3118, 22, 27, 29, 30dvdstrd 12012 . . . 4  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  /\  X  ||  P )  ->  y  ||  P )
3215, 31mtand 666 . . 3  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  ( y ^ 2 )  <_  P )  ->  -.  X  ||  P
)
3317ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  y  e.  ZZ )
3421adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  X  e.  ZZ )
3525adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  ->  P  e.  ZZ )
3635ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  P  e.  ZZ )
3728adantlr 477 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  y  ||  X )
38 simpr 110 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  X  ||  P )
3933, 34, 36, 37, 38dvdstrd 12012 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  y  ||  P )
4017adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  ZZ )
41 prmnn 12303 . . . . . . . . . . . . 13  |-  ( y  e.  Prime  ->  y  e.  NN )
4241nnne0d 9052 . . . . . . . . . . . 12  |-  ( y  e.  Prime  ->  y  =/=  0 )
4342ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  =/=  0 )
4443adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  =/=  0 )
4525ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  ZZ )
46 dvdsval2 11972 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  y  =/=  0  /\  P  e.  ZZ )  ->  (
y  ||  P  <->  ( P  /  y )  e.  ZZ ) )
4740, 44, 45, 46syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y  ||  P  <->  ( P  /  y )  e.  ZZ ) )
4847adantr 276 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  (
y  ||  P  <->  ( P  /  y )  e.  ZZ ) )
4939, 48mpbid 147 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  ( P  /  y )  e.  ZZ )
5040zred 9465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  RR )
5150recnd 8072 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  CC )
5251mulid2d 8062 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( 1  x.  y
)  =  y )
53 2nn 9169 . . . . . . . . . . . . . . 15  |-  2  e.  NN
54 fzssnn 10160 . . . . . . . . . . . . . . 15  |-  ( 2  e.  NN  ->  (
2 ... ( P  - 
1 ) )  C_  NN )
5553, 54ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
5655, 1sselid 3182 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  NN )
5756ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  X  e.  NN )
5857nnred 9020 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  X  e.  RR )
5925zred 9465 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  RR )
6059ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  RR )
61 simplrr 536 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  ||  X )
62 dvdsle 12026 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  X  e.  NN )  ->  ( y  ||  X  ->  y  <_  X )
)
6340, 57, 62syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y  ||  X  ->  y  <_  X )
)
6461, 63mpd 13 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  <_  X )
65 elfzle2 10120 . . . . . . . . . . . . . 14  |-  ( X  e.  ( 2 ... ( P  -  1 ) )  ->  X  <_  ( P  -  1 ) )
661, 65syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  X  <_  ( P  -  1 ) )
67 zltlem1 9400 . . . . . . . . . . . . . 14  |-  ( ( X  e.  ZZ  /\  P  e.  ZZ )  ->  ( X  <  P  <->  X  <_  ( P  - 
1 ) ) )
6820, 25, 67syl2anc 411 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  <  P  <->  X  <_  ( P  - 
1 ) ) )
6966, 68mpbird 167 . . . . . . . . . . . 12  |-  ( ph  ->  X  <  P )
7069ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  X  <  P )
7150, 58, 60, 64, 70lelttrd 8168 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  <  P )
7252, 71eqbrtrd 4056 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( 1  x.  y
)  <  P )
73 1red 8058 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
1  e.  RR )
7441nnrpd 9786 . . . . . . . . . . . 12  |-  ( y  e.  Prime  ->  y  e.  RR+ )
7574ad2antrl 490 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  e.  RR+ )
7675adantr 276 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  RR+ )
7773, 60, 76ltmuldivd 9836 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( 1  x.  y )  <  P  <->  1  <  ( P  / 
y ) ) )
7872, 77mpbid 147 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
1  <  ( P  /  y ) )
7978adantr 276 . . . . . . 7  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  1  <  ( P  /  y
) )
80 eluz2b1 9692 . . . . . . 7  |-  ( ( P  /  y )  e.  ( ZZ>= `  2
)  <->  ( ( P  /  y )  e.  ZZ  /\  1  < 
( P  /  y
) ) )
8149, 79, 80sylanbrc 417 . . . . . 6  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  ( P  /  y )  e.  ( ZZ>= `  2 )
)
82 exprmfct 12331 . . . . . 6  |-  ( ( P  /  y )  e.  ( ZZ>= `  2
)  ->  E. w  e.  Prime  w  ||  ( P  /  y ) )
8381, 82syl 14 . . . . 5  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  ->  E. w  e.  Prime  w  ||  ( P  /  y ) )
84 prmz 12304 . . . . . . . 8  |-  ( w  e.  Prime  ->  w  e.  ZZ )
8584ad2antrl 490 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  e.  ZZ )
8649adantr 276 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  ZZ )
8745ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  P  e.  ZZ )
88 simprr 531 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  ||  ( P  / 
y ) )
8939adantr 276 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
y  ||  P )
9044ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
y  =/=  0 )
91 divconjdvds 12031 . . . . . . . 8  |-  ( ( y  ||  P  /\  y  =/=  0 )  -> 
( P  /  y
)  ||  P )
9289, 90, 91syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  ||  P )
9385, 86, 87, 88, 92dvdstrd 12012 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  ||  P )
9485zred 9465 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  e.  RR )
9594resqcld 10808 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  e.  RR )
9660ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  P  e.  RR )
9781adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  ( ZZ>= ` 
2 ) )
98 eluz2nn 9657 . . . . . . . . . . . 12  |-  ( ( P  /  y )  e.  ( ZZ>= `  2
)  ->  ( P  /  y )  e.  NN )
9997, 98syl 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  NN )
10099nnred 9020 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( P  /  y
)  e.  RR )
101100resqcld 10808 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( ( P  / 
y ) ^ 2 )  e.  RR )
102 dvdsle 12026 . . . . . . . . . . . 12  |-  ( ( w  e.  ZZ  /\  ( P  /  y
)  e.  NN )  ->  ( w  ||  ( P  /  y
)  ->  w  <_  ( P  /  y ) ) )
10385, 99, 102syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w  ||  ( P  /  y )  ->  w  <_  ( P  / 
y ) ) )
10488, 103mpd 13 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  <_  ( P  / 
y ) )
105 prmnn 12303 . . . . . . . . . . . . . 14  |-  ( w  e.  Prime  ->  w  e.  NN )
106105nnnn0d 9319 . . . . . . . . . . . . 13  |-  ( w  e.  Prime  ->  w  e. 
NN0 )
107106nn0ge0d 9322 . . . . . . . . . . . 12  |-  ( w  e.  Prime  ->  0  <_  w )
108107ad2antrl 490 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  <_  w )
109 0red 8044 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  e.  RR )
110 1red 8058 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
1  e.  RR )
111 0le1 8525 . . . . . . . . . . . . 13  |-  0  <_  1
112111a1i 9 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  <_  1 )
11399nnge1d 9050 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
1  <_  ( P  /  y ) )
114109, 110, 100, 112, 113letrd 8167 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
0  <_  ( P  /  y ) )
11594, 100, 108, 114le2sqd 10814 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w  <_  ( P  /  y )  <->  ( w ^ 2 )  <_ 
( ( P  / 
y ) ^ 2 ) ) )
116104, 115mpbid 147 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  <_  ( ( P  /  y ) ^
2 ) )
11760recnd 8072 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  CC )
11841ad2antrl 490 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
y  e.  NN )
119118adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y  e.  NN )
120119nnap0d 9053 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
y #  0 )
121117, 51, 120sqdivapd 10795 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( P  / 
y ) ^ 2 )  =  ( ( P ^ 2 )  /  ( y ^
2 ) ) )
122117sqvald 10779 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P ^ 2 )  =  ( P  x.  P ) )
12350resqcld 10808 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y ^ 2 )  e.  RR )
124 eluz2nn 9657 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
12523, 124syl 14 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  P  e.  NN )
126125nnrpd 9786 . . . . . . . . . . . . . . 15  |-  ( ph  ->  P  e.  RR+ )
127126ad2antrr 488 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  e.  RR+ )
128 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  P  <  ( y ^
2 ) )
12960, 123, 127, 128ltmul2dd 9845 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P  x.  P
)  <  ( P  x.  ( y ^ 2 ) ) )
130122, 129eqbrtrd 4056 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P ^ 2 )  <  ( P  x.  ( y ^
2 ) ) )
13160resqcld 10808 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( P ^ 2 )  e.  RR )
132119nnsqcld 10803 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y ^ 2 )  e.  NN )
133132nnrpd 9786 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( y ^ 2 )  e.  RR+ )
134131, 60, 133ltdivmul2d 9841 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( ( P ^ 2 )  / 
( y ^ 2 ) )  <  P  <->  ( P ^ 2 )  <  ( P  x.  ( y ^ 2 ) ) ) )
135130, 134mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( P ^
2 )  /  (
y ^ 2 ) )  <  P )
136121, 135eqbrtrd 4056 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  -> 
( ( P  / 
y ) ^ 2 )  <  P )
137136ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( ( P  / 
y ) ^ 2 )  <  P )
13895, 101, 96, 116, 137lelttrd 8168 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  <  P )
13995, 96, 138ltled 8162 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( w ^ 2 )  <_  P )
140 oveq1 5932 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z ^ 2 )  =  ( w ^
2 ) )
141140breq1d 4044 . . . . . . . . 9  |-  ( z  =  w  ->  (
( z ^ 2 )  <_  P  <->  ( w ^ 2 )  <_  P ) )
142 breq1 4037 . . . . . . . . . 10  |-  ( z  =  w  ->  (
z  ||  P  <->  w  ||  P
) )
143142notbid 668 . . . . . . . . 9  |-  ( z  =  w  ->  ( -.  z  ||  P  <->  -.  w  ||  P ) )
144141, 143imbi12d 234 . . . . . . . 8  |-  ( z  =  w  ->  (
( ( z ^
2 )  <_  P  ->  -.  z  ||  P
)  <->  ( ( w ^ 2 )  <_  P  ->  -.  w  ||  P
) ) )
14511ad4antr 494 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  A. z  e.  Prime  ( ( z ^ 2 )  <_  P  ->  -.  z  ||  P ) )
146 simprl 529 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  w  e.  Prime )
147144, 145, 146rspcdva 2873 . . . . . . 7  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> 
( ( w ^
2 )  <_  P  ->  -.  w  ||  P
) )
148139, 147mpd 13 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  ->  -.  w  ||  P )
14993, 148pm2.21fal 1384 . . . . 5  |-  ( ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  /\  (
w  e.  Prime  /\  w  ||  ( P  /  y
) ) )  -> F.  )
15083, 149rexlimddv 2619 . . . 4  |-  ( ( ( ( ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  /\  P  < 
( y ^ 2 ) )  /\  X  ||  P )  -> F.  )
151150inegd 1383 . . 3  |-  ( ( ( ph  /\  (
y  e.  Prime  /\  y  ||  X ) )  /\  P  <  ( y ^
2 ) )  ->  -.  X  ||  P )
152 zsqcl 10719 . . . . 5  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
15317, 152syl 14 . . . 4  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
( y ^ 2 )  e.  ZZ )
154 zlelttric 9388 . . . 4  |-  ( ( ( y ^ 2 )  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( y ^
2 )  <_  P  \/  P  <  ( y ^ 2 ) ) )
155153, 35, 154syl2anc 411 . . 3  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  -> 
( ( y ^
2 )  <_  P  \/  P  <  ( y ^ 2 ) ) )
15632, 151, 155mpjaodan 799 . 2  |-  ( (
ph  /\  ( y  e.  Prime  /\  y  ||  X ) )  ->  -.  X  ||  P )
1574, 156rexlimddv 2619 1  |-  ( ph  ->  -.  X  ||  P
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   F. wfal 1369    e. wcel 2167    =/= wne 2367   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    x. cmul 7901    < clt 8078    <_ cle 8079    - cmin 8214    / cdiv 8716   NNcn 9007   2c2 9058   ZZcz 9343   ZZ>=cuz 9618   RR+crp 9745   ...cfz 10100   ^cexp 10647    || cdvds 11969   Primecprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-prm 12301
This theorem is referenced by:  isprm5  12335
  Copyright terms: Public domain W3C validator