ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj Unicode version

Theorem genpdisj 7636
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpdisj.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genpdisj.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genpdisj  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
Distinct variable groups:    x, y, z, w, v, q, A   
x, B, y, z, w, v, q    x, G, y, z, w, v, q    F, q
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpdisj
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpelvl 7625 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 1st `  ( A F B ) )  <->  E. a  e.  ( 1st `  A ) E. b  e.  ( 1st `  B ) q  =  ( a G b ) ) )
4 r2ex 2526 . . . . . . . 8  |-  ( E. a  e.  ( 1st `  A ) E. b  e.  ( 1st `  B
) q  =  ( a G b )  <->  E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) ) )
53, 4bitrdi 196 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 1st `  ( A F B ) )  <->  E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) ) ) )
61, 2genpelvu 7626 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  <->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) q  =  ( c G d ) ) )
7 r2ex 2526 . . . . . . . 8  |-  ( E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B
) q  =  ( c G d )  <->  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )
86, 7bitrdi 196 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  <->  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
95, 8anbi12d 473 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  ( E. a E. b ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) )  /\  q  =  ( c G d ) ) ) ) )
10 ee4anv 1962 . . . . . 6  |-  ( E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  <->  ( E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  q  =  ( a G b ) )  /\  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
119, 10bitr4di 198 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) ) )
1211biimpa 296 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  q  =  ( a G b ) )  /\  ( ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
13 an4 586 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  <->  ( (
a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) ) )
14 prop 7588 . . . . . . . . . . . . . . . 16  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
15 prltlu 7600 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A
) )  ->  a  <Q  c )
16153expib 1209 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  ->  a  <Q  c ) )
1714, 16syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  (
( a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A ) )  ->  a  <Q  c ) )
18 prop 7588 . . . . . . . . . . . . . . . 16  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 prltlu 7600 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  b  e.  ( 1st `  B )  /\  d  e.  ( 2nd `  B
) )  ->  b  <Q  d )
20193expib 1209 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  ( ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) )  ->  b  <Q  d ) )
2118, 20syl 14 . . . . . . . . . . . . . . 15  |-  ( B  e.  P.  ->  (
( b  e.  ( 1st `  B )  /\  d  e.  ( 2nd `  B ) )  ->  b  <Q  d ) )
2217, 21im2anan9 598 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a  <Q  c  /\  b  <Q  d ) ) )
23 genpdisj.ord . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
24 genpdisj.com . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
2523, 24genplt2i 7623 . . . . . . . . . . . . . 14  |-  ( ( a  <Q  c  /\  b  <Q  d )  -> 
( a G b )  <Q  ( c G d ) )
2622, 25syl6 33 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a G b ) 
<Q  ( c G d ) ) )
2713, 26biimtrrid 153 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a G b ) 
<Q  ( c G d ) ) )
2827imp 124 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) ) )  -> 
( a G b )  <Q  ( c G d ) )
2928adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) ) )  -> 
( a G b )  <Q  ( c G d ) )
3029adantrlr 485 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) ) )  ->  ( a G b )  <Q  (
c G d ) )
3130adantrrr 487 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  ( a G b )  <Q  (
c G d ) )
32 eqtr2 2224 . . . . . . . . . . 11  |-  ( ( q  =  ( a G b )  /\  q  =  ( c G d ) )  ->  ( a G b )  =  ( c G d ) )
3332ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> 
( a G b )  =  ( c G d ) )
3433adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  ( a G b )  =  ( c G d ) )
35 ltsonq 7511 . . . . . . . . . . 11  |-  <Q  Or  Q.
36 ltrelnq 7478 . . . . . . . . . . 11  |-  <Q  C_  ( Q.  X.  Q. )
3735, 36soirri 5077 . . . . . . . . . 10  |-  -.  (
a G b ) 
<Q  ( a G b )
38 breq2 4048 . . . . . . . . . 10  |-  ( ( a G b )  =  ( c G d )  ->  (
( a G b )  <Q  ( a G b )  <->  ( a G b )  <Q 
( c G d ) ) )
3937, 38mtbii 676 . . . . . . . . 9  |-  ( ( a G b )  =  ( c G d )  ->  -.  ( a G b )  <Q  ( c G d ) )
4034, 39syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  -.  ( a G b )  <Q 
( c G d ) )
4131, 40pm2.21fal 1393 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  -> F.  )
4241ex 115 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  (
( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4342exlimdvv 1921 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4443exlimdvv 1921 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4512, 44mpd 13 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  -> F.  )
4645inegd 1392 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
4746ralrimivw 2580 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   F. wfal 1378   E.wex 1515    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488   <.cop 3636   class class class wbr 4044   ` cfv 5271  (class class class)co 5944    e. cmpo 5946   1stc1st 6224   2ndc2nd 6225   Q.cnq 7393    <Q cltq 7398   P.cnp 7404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-mi 7419  df-lti 7420  df-enq 7460  df-nqqs 7461  df-ltnqqs 7466  df-inp 7579
This theorem is referenced by:  addclpr  7650  mulclpr  7685
  Copyright terms: Public domain W3C validator