ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpdisj Unicode version

Theorem genpdisj 7583
Description: The lower and upper cuts produced by addition or multiplication on positive reals are disjoint. (Contributed by Jim Kingdon, 15-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpdisj.ord  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
genpdisj.com  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
Assertion
Ref Expression
genpdisj  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
Distinct variable groups:    x, y, z, w, v, q, A   
x, B, y, z, w, v, q    x, G, y, z, w, v, q    F, q
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpdisj
Dummy variables  a  b  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
2 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
31, 2genpelvl 7572 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 1st `  ( A F B ) )  <->  E. a  e.  ( 1st `  A ) E. b  e.  ( 1st `  B ) q  =  ( a G b ) ) )
4 r2ex 2514 . . . . . . . 8  |-  ( E. a  e.  ( 1st `  A ) E. b  e.  ( 1st `  B
) q  =  ( a G b )  <->  E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) ) )
53, 4bitrdi 196 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 1st `  ( A F B ) )  <->  E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) ) ) )
61, 2genpelvu 7573 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  <->  E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B ) q  =  ( c G d ) ) )
7 r2ex 2514 . . . . . . . 8  |-  ( E. c  e.  ( 2nd `  A ) E. d  e.  ( 2nd `  B
) q  =  ( c G d )  <->  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )
86, 7bitrdi 196 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( q  e.  ( 2nd `  ( A F B ) )  <->  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
95, 8anbi12d 473 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  ( E. a E. b ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) )  /\  q  =  ( c G d ) ) ) ) )
10 ee4anv 1950 . . . . . 6  |-  ( E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  <->  ( E. a E. b ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  q  =  ( a G b ) )  /\  E. c E. d ( ( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
119, 10bitr4di 198 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) )  <->  E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) ) )
1211biimpa 296 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  q  =  ( a G b ) )  /\  ( ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )
13 an4 586 . . . . . . . . . . . . 13  |-  ( ( ( a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  <->  ( (
a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B
) )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) ) )
14 prop 7535 . . . . . . . . . . . . . . . 16  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
15 prltlu 7547 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A
) )  ->  a  <Q  c )
16153expib 1208 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  ->  a  <Q  c ) )
1714, 16syl 14 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  (
( a  e.  ( 1st `  A )  /\  c  e.  ( 2nd `  A ) )  ->  a  <Q  c ) )
18 prop 7535 . . . . . . . . . . . . . . . 16  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
19 prltlu 7547 . . . . . . . . . . . . . . . . 17  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  b  e.  ( 1st `  B )  /\  d  e.  ( 2nd `  B
) )  ->  b  <Q  d )
20193expib 1208 . . . . . . . . . . . . . . . 16  |-  ( <.
( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  ->  ( ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) )  ->  b  <Q  d ) )
2118, 20syl 14 . . . . . . . . . . . . . . 15  |-  ( B  e.  P.  ->  (
( b  e.  ( 1st `  B )  /\  d  e.  ( 2nd `  B ) )  ->  b  <Q  d ) )
2217, 21im2anan9 598 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a  <Q  c  /\  b  <Q  d ) ) )
23 genpdisj.ord . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
x  <Q  y  <->  ( z G x )  <Q 
( z G y ) ) )
24 genpdisj.com . . . . . . . . . . . . . . 15  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x G y )  =  ( y G x ) )
2523, 24genplt2i 7570 . . . . . . . . . . . . . 14  |-  ( ( a  <Q  c  /\  b  <Q  d )  -> 
( a G b )  <Q  ( c G d ) )
2622, 25syl6 33 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  c  e.  ( 2nd `  A ) )  /\  ( b  e.  ( 1st `  B
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a G b ) 
<Q  ( c G d ) ) )
2713, 26biimtrrid 153 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) )  ->  (
a G b ) 
<Q  ( c G d ) ) )
2827imp 124 . . . . . . . . . . 11  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) ) )  -> 
( a G b )  <Q  ( c G d ) )
2928adantlr 477 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( a  e.  ( 1st `  A )  /\  b  e.  ( 1st `  B ) )  /\  ( c  e.  ( 2nd `  A
)  /\  d  e.  ( 2nd `  B ) ) ) )  -> 
( a G b )  <Q  ( c G d ) )
3029adantrlr 485 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B
) ) ) )  ->  ( a G b )  <Q  (
c G d ) )
3130adantrrr 487 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  ( a G b )  <Q  (
c G d ) )
32 eqtr2 2212 . . . . . . . . . . 11  |-  ( ( q  =  ( a G b )  /\  q  =  ( c G d ) )  ->  ( a G b )  =  ( c G d ) )
3332ad2ant2l 508 . . . . . . . . . 10  |-  ( ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> 
( a G b )  =  ( c G d ) )
3433adantl 277 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  ( a G b )  =  ( c G d ) )
35 ltsonq 7458 . . . . . . . . . . 11  |-  <Q  Or  Q.
36 ltrelnq 7425 . . . . . . . . . . 11  |-  <Q  C_  ( Q.  X.  Q. )
3735, 36soirri 5060 . . . . . . . . . 10  |-  -.  (
a G b ) 
<Q  ( a G b )
38 breq2 4033 . . . . . . . . . 10  |-  ( ( a G b )  =  ( c G d )  ->  (
( a G b )  <Q  ( a G b )  <->  ( a G b )  <Q 
( c G d ) ) )
3937, 38mtbii 675 . . . . . . . . 9  |-  ( ( a G b )  =  ( c G d )  ->  -.  ( a G b )  <Q  ( c G d ) )
4034, 39syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  ->  -.  ( a G b )  <Q 
( c G d ) )
4131, 40pm2.21fal 1384 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  (
q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  /\  (
( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) ) )  -> F.  )
4241ex 115 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  (
( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4342exlimdvv 1909 . . . . 5  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4443exlimdvv 1909 . . . 4  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  ->  ( E. a E. b E. c E. d ( ( ( a  e.  ( 1st `  A
)  /\  b  e.  ( 1st `  B ) )  /\  q  =  ( a G b ) )  /\  (
( c  e.  ( 2nd `  A )  /\  d  e.  ( 2nd `  B ) )  /\  q  =  ( c G d ) ) )  -> F.  ) )
4512, 44mpd 13 . . 3  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )  -> F.  )
4645inegd 1383 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
4746ralrimivw 2568 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  ( A F B ) )  /\  q  e.  ( 2nd `  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   F. wfal 1369   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   <.cop 3621   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1stc1st 6191   2ndc2nd 6192   Q.cnq 7340    <Q cltq 7345   P.cnp 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-mi 7366  df-lti 7367  df-enq 7407  df-nqqs 7408  df-ltnqqs 7413  df-inp 7526
This theorem is referenced by:  addclpr  7597  mulclpr  7632
  Copyright terms: Public domain W3C validator