ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemeu Unicode version

Theorem dedekindeulemeu 15127
Description: Lemma for dedekindeu 15128. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
dedekindeulemeu.are  |-  ( ph  ->  A  e.  RR )
dedekindeulemeu.ac  |-  ( ph  ->  ( A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )
dedekindeulemeu.bre  |-  ( ph  ->  B  e.  RR )
dedekindeulemeu.bc  |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )
dedekindeulemeu.lt  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
dedekindeulemeu  |-  ( ph  -> F.  )
Distinct variable groups:    A, q, r    B, r    L, q, r    U, q, r
Allowed substitution hints:    ph( r, q)    B( q)

Proof of Theorem dedekindeulemeu
StepHypRef Expression
1 breq1 4048 . . . 4  |-  ( q  =  A  ->  (
q  <  A  <->  A  <  A ) )
2 dedekindeulemeu.ac . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )
32simpld 112 . . . . 5  |-  ( ph  ->  A. q  e.  L  q  <  A )
43adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  L )  ->  A. q  e.  L  q  <  A )
5 simpr 110 . . . 4  |-  ( (
ph  /\  A  e.  L )  ->  A  e.  L )
61, 4, 5rspcdva 2882 . . 3  |-  ( (
ph  /\  A  e.  L )  ->  A  <  A )
7 dedekindeulemeu.are . . . . 5  |-  ( ph  ->  A  e.  RR )
87ltnrd 8186 . . . 4  |-  ( ph  ->  -.  A  <  A
)
98adantr 276 . . 3  |-  ( (
ph  /\  A  e.  L )  ->  -.  A  <  A )
106, 9pm2.21fal 1393 . 2  |-  ( (
ph  /\  A  e.  L )  -> F.  )
11 breq2 4049 . . . 4  |-  ( r  =  B  ->  ( B  <  r  <->  B  <  B ) )
12 dedekindeulemeu.bc . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )
1312simprd 114 . . . . 5  |-  ( ph  ->  A. r  e.  U  B  <  r )
1413adantr 276 . . . 4  |-  ( (
ph  /\  B  e.  U )  ->  A. r  e.  U  B  <  r )
15 simpr 110 . . . 4  |-  ( (
ph  /\  B  e.  U )  ->  B  e.  U )
1611, 14, 15rspcdva 2882 . . 3  |-  ( (
ph  /\  B  e.  U )  ->  B  <  B )
17 dedekindeulemeu.bre . . . . 5  |-  ( ph  ->  B  e.  RR )
1817ltnrd 8186 . . . 4  |-  ( ph  ->  -.  B  <  B
)
1918adantr 276 . . 3  |-  ( (
ph  /\  B  e.  U )  ->  -.  B  <  B )
2016, 19pm2.21fal 1393 . 2  |-  ( (
ph  /\  B  e.  U )  -> F.  )
21 dedekindeulemeu.lt . . 3  |-  ( ph  ->  A  <  B )
22 breq2 4049 . . . . 5  |-  ( r  =  B  ->  ( A  <  r  <->  A  <  B ) )
23 eleq1 2268 . . . . . 6  |-  ( r  =  B  ->  (
r  e.  U  <->  B  e.  U ) )
2423orbi2d 792 . . . . 5  |-  ( r  =  B  ->  (
( A  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  B  e.  U ) ) )
2522, 24imbi12d 234 . . . 4  |-  ( r  =  B  ->  (
( A  <  r  ->  ( A  e.  L  \/  r  e.  U
) )  <->  ( A  <  B  ->  ( A  e.  L  \/  B  e.  U ) ) ) )
26 breq1 4048 . . . . . . 7  |-  ( q  =  A  ->  (
q  <  r  <->  A  <  r ) )
27 eleq1 2268 . . . . . . . 8  |-  ( q  =  A  ->  (
q  e.  L  <->  A  e.  L ) )
2827orbi1d 793 . . . . . . 7  |-  ( q  =  A  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  r  e.  U ) ) )
2926, 28imbi12d 234 . . . . . 6  |-  ( q  =  A  ->  (
( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( A  <  r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
3029ralbidv 2506 . . . . 5  |-  ( q  =  A  ->  ( A. r  e.  RR  ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  RR  ( A  < 
r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
31 dedekindeu.loc . . . . 5  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
3230, 31, 7rspcdva 2882 . . . 4  |-  ( ph  ->  A. r  e.  RR  ( A  <  r  -> 
( A  e.  L  \/  r  e.  U
) ) )
3325, 32, 17rspcdva 2882 . . 3  |-  ( ph  ->  ( A  <  B  ->  ( A  e.  L  \/  B  e.  U
) ) )
3421, 33mpd 13 . 2  |-  ( ph  ->  ( A  e.  L  \/  B  e.  U
) )
3510, 20, 34mpjaodan 800 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   F. wfal 1378    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   (/)c0 3460   class class class wbr 4045   RRcr 7926    < clt 8109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-xp 4682  df-pnf 8111  df-mnf 8112  df-ltxr 8114
This theorem is referenced by:  dedekindeu  15128
  Copyright terms: Public domain W3C validator