| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | Unicode version | ||
| Description: Lemma for dedekindeu 14859. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss |
|
| dedekindeu.uss |
|
| dedekindeu.lm |
|
| dedekindeu.um |
|
| dedekindeu.lr |
|
| dedekindeu.ur |
|
| dedekindeu.disj |
|
| dedekindeu.loc |
|
| dedekindeulemeu.are |
|
| dedekindeulemeu.ac |
|
| dedekindeulemeu.bre |
|
| dedekindeulemeu.bc |
|
| dedekindeulemeu.lt |
|
| Ref | Expression |
|---|---|
| dedekindeulemeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4036 |
. . . 4
| |
| 2 | dedekindeulemeu.ac |
. . . . . 6
| |
| 3 | 2 | simpld 112 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | simpr 110 |
. . . 4
| |
| 6 | 1, 4, 5 | rspcdva 2873 |
. . 3
|
| 7 | dedekindeulemeu.are |
. . . . 5
| |
| 8 | 7 | ltnrd 8138 |
. . . 4
|
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | 6, 9 | pm2.21fal 1384 |
. 2
|
| 11 | breq2 4037 |
. . . 4
| |
| 12 | dedekindeulemeu.bc |
. . . . . 6
| |
| 13 | 12 | simprd 114 |
. . . . 5
|
| 14 | 13 | adantr 276 |
. . . 4
|
| 15 | simpr 110 |
. . . 4
| |
| 16 | 11, 14, 15 | rspcdva 2873 |
. . 3
|
| 17 | dedekindeulemeu.bre |
. . . . 5
| |
| 18 | 17 | ltnrd 8138 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 16, 19 | pm2.21fal 1384 |
. 2
|
| 21 | dedekindeulemeu.lt |
. . 3
| |
| 22 | breq2 4037 |
. . . . 5
| |
| 23 | eleq1 2259 |
. . . . . 6
| |
| 24 | 23 | orbi2d 791 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 234 |
. . . 4
|
| 26 | breq1 4036 |
. . . . . . 7
| |
| 27 | eleq1 2259 |
. . . . . . . 8
| |
| 28 | 27 | orbi1d 792 |
. . . . . . 7
|
| 29 | 26, 28 | imbi12d 234 |
. . . . . 6
|
| 30 | 29 | ralbidv 2497 |
. . . . 5
|
| 31 | dedekindeu.loc |
. . . . 5
| |
| 32 | 30, 31, 7 | rspcdva 2873 |
. . . 4
|
| 33 | 25, 32, 17 | rspcdva 2873 |
. . 3
|
| 34 | 21, 33 | mpd 13 |
. 2
|
| 35 | 10, 20, 34 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-pre-ltirr 7991 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-pnf 8063 df-mnf 8064 df-ltxr 8066 |
| This theorem is referenced by: dedekindeu 14859 |
| Copyright terms: Public domain | W3C validator |