Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | Unicode version |
Description: Lemma for dedekindeu 13241. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
Ref | Expression |
---|---|
dedekindeu.lss | |
dedekindeu.uss | |
dedekindeu.lm | |
dedekindeu.um | |
dedekindeu.lr | |
dedekindeu.ur | |
dedekindeu.disj | |
dedekindeu.loc | |
dedekindeulemeu.are | |
dedekindeulemeu.ac | |
dedekindeulemeu.bre | |
dedekindeulemeu.bc | |
dedekindeulemeu.lt |
Ref | Expression |
---|---|
dedekindeulemeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . 4 | |
2 | dedekindeulemeu.ac | . . . . . 6 | |
3 | 2 | simpld 111 | . . . . 5 |
4 | 3 | adantr 274 | . . . 4 |
5 | simpr 109 | . . . 4 | |
6 | 1, 4, 5 | rspcdva 2835 | . . 3 |
7 | dedekindeulemeu.are | . . . . 5 | |
8 | 7 | ltnrd 8010 | . . . 4 |
9 | 8 | adantr 274 | . . 3 |
10 | 6, 9 | pm2.21fal 1363 | . 2 |
11 | breq2 3986 | . . . 4 | |
12 | dedekindeulemeu.bc | . . . . . 6 | |
13 | 12 | simprd 113 | . . . . 5 |
14 | 13 | adantr 274 | . . . 4 |
15 | simpr 109 | . . . 4 | |
16 | 11, 14, 15 | rspcdva 2835 | . . 3 |
17 | dedekindeulemeu.bre | . . . . 5 | |
18 | 17 | ltnrd 8010 | . . . 4 |
19 | 18 | adantr 274 | . . 3 |
20 | 16, 19 | pm2.21fal 1363 | . 2 |
21 | dedekindeulemeu.lt | . . 3 | |
22 | breq2 3986 | . . . . 5 | |
23 | eleq1 2229 | . . . . . 6 | |
24 | 23 | orbi2d 780 | . . . . 5 |
25 | 22, 24 | imbi12d 233 | . . . 4 |
26 | breq1 3985 | . . . . . . 7 | |
27 | eleq1 2229 | . . . . . . . 8 | |
28 | 27 | orbi1d 781 | . . . . . . 7 |
29 | 26, 28 | imbi12d 233 | . . . . . 6 |
30 | 29 | ralbidv 2466 | . . . . 5 |
31 | dedekindeu.loc | . . . . 5 | |
32 | 30, 31, 7 | rspcdva 2835 | . . . 4 |
33 | 25, 32, 17 | rspcdva 2835 | . . 3 |
34 | 21, 33 | mpd 13 | . 2 |
35 | 10, 20, 34 | mpjaodan 788 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wfal 1348 wcel 2136 wral 2444 wrex 2445 cin 3115 wss 3116 c0 3409 class class class wbr 3982 cr 7752 clt 7933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-pnf 7935 df-mnf 7936 df-ltxr 7938 |
This theorem is referenced by: dedekindeu 13241 |
Copyright terms: Public domain | W3C validator |