ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemeu Unicode version

Theorem dedekindeulemeu 14776
Description: Lemma for dedekindeu 14777. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
Hypotheses
Ref Expression
dedekindeu.lss  |-  ( ph  ->  L  C_  RR )
dedekindeu.uss  |-  ( ph  ->  U  C_  RR )
dedekindeu.lm  |-  ( ph  ->  E. q  e.  RR  q  e.  L )
dedekindeu.um  |-  ( ph  ->  E. r  e.  RR  r  e.  U )
dedekindeu.lr  |-  ( ph  ->  A. q  e.  RR  ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindeu.ur  |-  ( ph  ->  A. r  e.  RR  ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindeu.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindeu.loc  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
dedekindeulemeu.are  |-  ( ph  ->  A  e.  RR )
dedekindeulemeu.ac  |-  ( ph  ->  ( A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )
dedekindeulemeu.bre  |-  ( ph  ->  B  e.  RR )
dedekindeulemeu.bc  |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )
dedekindeulemeu.lt  |-  ( ph  ->  A  <  B )
Assertion
Ref Expression
dedekindeulemeu  |-  ( ph  -> F.  )
Distinct variable groups:    A, q, r    B, r    L, q, r    U, q, r
Allowed substitution hints:    ph( r, q)    B( q)

Proof of Theorem dedekindeulemeu
StepHypRef Expression
1 breq1 4032 . . . 4  |-  ( q  =  A  ->  (
q  <  A  <->  A  <  A ) )
2 dedekindeulemeu.ac . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  A  /\  A. r  e.  U  A  <  r ) )
32simpld 112 . . . . 5  |-  ( ph  ->  A. q  e.  L  q  <  A )
43adantr 276 . . . 4  |-  ( (
ph  /\  A  e.  L )  ->  A. q  e.  L  q  <  A )
5 simpr 110 . . . 4  |-  ( (
ph  /\  A  e.  L )  ->  A  e.  L )
61, 4, 5rspcdva 2869 . . 3  |-  ( (
ph  /\  A  e.  L )  ->  A  <  A )
7 dedekindeulemeu.are . . . . 5  |-  ( ph  ->  A  e.  RR )
87ltnrd 8131 . . . 4  |-  ( ph  ->  -.  A  <  A
)
98adantr 276 . . 3  |-  ( (
ph  /\  A  e.  L )  ->  -.  A  <  A )
106, 9pm2.21fal 1384 . 2  |-  ( (
ph  /\  A  e.  L )  -> F.  )
11 breq2 4033 . . . 4  |-  ( r  =  B  ->  ( B  <  r  <->  B  <  B ) )
12 dedekindeulemeu.bc . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  B  /\  A. r  e.  U  B  <  r ) )
1312simprd 114 . . . . 5  |-  ( ph  ->  A. r  e.  U  B  <  r )
1413adantr 276 . . . 4  |-  ( (
ph  /\  B  e.  U )  ->  A. r  e.  U  B  <  r )
15 simpr 110 . . . 4  |-  ( (
ph  /\  B  e.  U )  ->  B  e.  U )
1611, 14, 15rspcdva 2869 . . 3  |-  ( (
ph  /\  B  e.  U )  ->  B  <  B )
17 dedekindeulemeu.bre . . . . 5  |-  ( ph  ->  B  e.  RR )
1817ltnrd 8131 . . . 4  |-  ( ph  ->  -.  B  <  B
)
1918adantr 276 . . 3  |-  ( (
ph  /\  B  e.  U )  ->  -.  B  <  B )
2016, 19pm2.21fal 1384 . 2  |-  ( (
ph  /\  B  e.  U )  -> F.  )
21 dedekindeulemeu.lt . . 3  |-  ( ph  ->  A  <  B )
22 breq2 4033 . . . . 5  |-  ( r  =  B  ->  ( A  <  r  <->  A  <  B ) )
23 eleq1 2256 . . . . . 6  |-  ( r  =  B  ->  (
r  e.  U  <->  B  e.  U ) )
2423orbi2d 791 . . . . 5  |-  ( r  =  B  ->  (
( A  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  B  e.  U ) ) )
2522, 24imbi12d 234 . . . 4  |-  ( r  =  B  ->  (
( A  <  r  ->  ( A  e.  L  \/  r  e.  U
) )  <->  ( A  <  B  ->  ( A  e.  L  \/  B  e.  U ) ) ) )
26 breq1 4032 . . . . . . 7  |-  ( q  =  A  ->  (
q  <  r  <->  A  <  r ) )
27 eleq1 2256 . . . . . . . 8  |-  ( q  =  A  ->  (
q  e.  L  <->  A  e.  L ) )
2827orbi1d 792 . . . . . . 7  |-  ( q  =  A  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( A  e.  L  \/  r  e.  U ) ) )
2926, 28imbi12d 234 . . . . . 6  |-  ( q  =  A  ->  (
( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( A  <  r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
3029ralbidv 2494 . . . . 5  |-  ( q  =  A  ->  ( A. r  e.  RR  ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  RR  ( A  < 
r  ->  ( A  e.  L  \/  r  e.  U ) ) ) )
31 dedekindeu.loc . . . . 5  |-  ( ph  ->  A. q  e.  RR  A. r  e.  RR  (
q  <  r  ->  ( q  e.  L  \/  r  e.  U )
) )
3230, 31, 7rspcdva 2869 . . . 4  |-  ( ph  ->  A. r  e.  RR  ( A  <  r  -> 
( A  e.  L  \/  r  e.  U
) ) )
3325, 32, 17rspcdva 2869 . . 3  |-  ( ph  ->  ( A  <  B  ->  ( A  e.  L  \/  B  e.  U
) ) )
3421, 33mpd 13 . 2  |-  ( ph  ->  ( A  e.  L  \/  B  e.  U
) )
3510, 20, 34mpjaodan 799 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   F. wfal 1369    e. wcel 2164   A.wral 2472   E.wrex 2473    i^i cin 3152    C_ wss 3153   (/)c0 3446   class class class wbr 4029   RRcr 7871    < clt 8054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-pre-ltirr 7984
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-pnf 8056  df-mnf 8057  df-ltxr 8059
This theorem is referenced by:  dedekindeu  14777
  Copyright terms: Public domain W3C validator