| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dedekindeulemeu | Unicode version | ||
| Description: Lemma for dedekindeu 15297. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.) |
| Ref | Expression |
|---|---|
| dedekindeu.lss |
|
| dedekindeu.uss |
|
| dedekindeu.lm |
|
| dedekindeu.um |
|
| dedekindeu.lr |
|
| dedekindeu.ur |
|
| dedekindeu.disj |
|
| dedekindeu.loc |
|
| dedekindeulemeu.are |
|
| dedekindeulemeu.ac |
|
| dedekindeulemeu.bre |
|
| dedekindeulemeu.bc |
|
| dedekindeulemeu.lt |
|
| Ref | Expression |
|---|---|
| dedekindeulemeu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4086 |
. . . 4
| |
| 2 | dedekindeulemeu.ac |
. . . . . 6
| |
| 3 | 2 | simpld 112 |
. . . . 5
|
| 4 | 3 | adantr 276 |
. . . 4
|
| 5 | simpr 110 |
. . . 4
| |
| 6 | 1, 4, 5 | rspcdva 2912 |
. . 3
|
| 7 | dedekindeulemeu.are |
. . . . 5
| |
| 8 | 7 | ltnrd 8258 |
. . . 4
|
| 9 | 8 | adantr 276 |
. . 3
|
| 10 | 6, 9 | pm2.21fal 1415 |
. 2
|
| 11 | breq2 4087 |
. . . 4
| |
| 12 | dedekindeulemeu.bc |
. . . . . 6
| |
| 13 | 12 | simprd 114 |
. . . . 5
|
| 14 | 13 | adantr 276 |
. . . 4
|
| 15 | simpr 110 |
. . . 4
| |
| 16 | 11, 14, 15 | rspcdva 2912 |
. . 3
|
| 17 | dedekindeulemeu.bre |
. . . . 5
| |
| 18 | 17 | ltnrd 8258 |
. . . 4
|
| 19 | 18 | adantr 276 |
. . 3
|
| 20 | 16, 19 | pm2.21fal 1415 |
. 2
|
| 21 | dedekindeulemeu.lt |
. . 3
| |
| 22 | breq2 4087 |
. . . . 5
| |
| 23 | eleq1 2292 |
. . . . . 6
| |
| 24 | 23 | orbi2d 795 |
. . . . 5
|
| 25 | 22, 24 | imbi12d 234 |
. . . 4
|
| 26 | breq1 4086 |
. . . . . . 7
| |
| 27 | eleq1 2292 |
. . . . . . . 8
| |
| 28 | 27 | orbi1d 796 |
. . . . . . 7
|
| 29 | 26, 28 | imbi12d 234 |
. . . . . 6
|
| 30 | 29 | ralbidv 2530 |
. . . . 5
|
| 31 | dedekindeu.loc |
. . . . 5
| |
| 32 | 30, 31, 7 | rspcdva 2912 |
. . . 4
|
| 33 | 25, 32, 17 | rspcdva 2912 |
. . 3
|
| 34 | 21, 33 | mpd 13 |
. 2
|
| 35 | 10, 20, 34 | mpjaodan 803 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltirr 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 |
| This theorem is referenced by: dedekindeu 15297 |
| Copyright terms: Public domain | W3C validator |