ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemeu Unicode version

Theorem dedekindicclemeu 13403
Description: Lemma for dedekindicc 13405. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicc.ab  |-  ( ph  ->  A  <  B )
dedekindicclemeu.are  |-  ( ph  ->  C  e.  ( A [,] B ) )
dedekindicclemeu.ac  |-  ( ph  ->  ( A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )
dedekindicclemeu.bre  |-  ( ph  ->  D  e.  ( A [,] B ) )
dedekindicclemeu.bc  |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r ) )
dedekindicclemeu.lt  |-  ( ph  ->  C  <  D )
Assertion
Ref Expression
dedekindicclemeu  |-  ( ph  -> F.  )
Distinct variable groups:    A, q, r    B, q, r    C, q, r    D, r    L, q, r    U, q, r
Allowed substitution hints:    ph( r, q)    D( q)

Proof of Theorem dedekindicclemeu
StepHypRef Expression
1 breq1 3992 . . . 4  |-  ( q  =  C  ->  (
q  <  C  <->  C  <  C ) )
2 dedekindicclemeu.ac . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )
32simpld 111 . . . . 5  |-  ( ph  ->  A. q  e.  L  q  <  C )
43adantr 274 . . . 4  |-  ( (
ph  /\  C  e.  L )  ->  A. q  e.  L  q  <  C )
5 simpr 109 . . . 4  |-  ( (
ph  /\  C  e.  L )  ->  C  e.  L )
61, 4, 5rspcdva 2839 . . 3  |-  ( (
ph  /\  C  e.  L )  ->  C  <  C )
7 dedekindicc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
8 dedekindicc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
9 iccssre 9912 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
107, 8, 9syl2anc 409 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
11 dedekindicclemeu.are . . . . . 6  |-  ( ph  ->  C  e.  ( A [,] B ) )
1210, 11sseldd 3148 . . . . 5  |-  ( ph  ->  C  e.  RR )
1312ltnrd 8031 . . . 4  |-  ( ph  ->  -.  C  <  C
)
1413adantr 274 . . 3  |-  ( (
ph  /\  C  e.  L )  ->  -.  C  <  C )
156, 14pm2.21fal 1368 . 2  |-  ( (
ph  /\  C  e.  L )  -> F.  )
16 breq2 3993 . . . 4  |-  ( r  =  D  ->  ( D  <  r  <->  D  <  D ) )
17 dedekindicclemeu.bc . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r ) )
1817simprd 113 . . . . 5  |-  ( ph  ->  A. r  e.  U  D  <  r )
1918adantr 274 . . . 4  |-  ( (
ph  /\  D  e.  U )  ->  A. r  e.  U  D  <  r )
20 simpr 109 . . . 4  |-  ( (
ph  /\  D  e.  U )  ->  D  e.  U )
2116, 19, 20rspcdva 2839 . . 3  |-  ( (
ph  /\  D  e.  U )  ->  D  <  D )
22 dedekindicclemeu.bre . . . . . 6  |-  ( ph  ->  D  e.  ( A [,] B ) )
2310, 22sseldd 3148 . . . . 5  |-  ( ph  ->  D  e.  RR )
2423ltnrd 8031 . . . 4  |-  ( ph  ->  -.  D  <  D
)
2524adantr 274 . . 3  |-  ( (
ph  /\  D  e.  U )  ->  -.  D  <  D )
2621, 25pm2.21fal 1368 . 2  |-  ( (
ph  /\  D  e.  U )  -> F.  )
27 dedekindicclemeu.lt . . 3  |-  ( ph  ->  C  <  D )
28 breq2 3993 . . . . 5  |-  ( r  =  D  ->  ( C  <  r  <->  C  <  D ) )
29 eleq1 2233 . . . . . 6  |-  ( r  =  D  ->  (
r  e.  U  <->  D  e.  U ) )
3029orbi2d 785 . . . . 5  |-  ( r  =  D  ->  (
( C  e.  L  \/  r  e.  U
)  <->  ( C  e.  L  \/  D  e.  U ) ) )
3128, 30imbi12d 233 . . . 4  |-  ( r  =  D  ->  (
( C  <  r  ->  ( C  e.  L  \/  r  e.  U
) )  <->  ( C  <  D  ->  ( C  e.  L  \/  D  e.  U ) ) ) )
32 breq1 3992 . . . . . . 7  |-  ( q  =  C  ->  (
q  <  r  <->  C  <  r ) )
33 eleq1 2233 . . . . . . . 8  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3433orbi1d 786 . . . . . . 7  |-  ( q  =  C  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( C  e.  L  \/  r  e.  U ) ) )
3532, 34imbi12d 233 . . . . . 6  |-  ( q  =  C  ->  (
( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( C  <  r  ->  ( C  e.  L  \/  r  e.  U ) ) ) )
3635ralbidv 2470 . . . . 5  |-  ( q  =  C  ->  ( A. r  e.  ( A [,] B ) ( q  <  r  -> 
( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  ( A [,] B
) ( C  < 
r  ->  ( C  e.  L  \/  r  e.  U ) ) ) )
37 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
3836, 37, 11rspcdva 2839 . . . 4  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( C  <  r  ->  ( C  e.  L  \/  r  e.  U
) ) )
3931, 38, 22rspcdva 2839 . . 3  |-  ( ph  ->  ( C  <  D  ->  ( C  e.  L  \/  D  e.  U
) ) )
4027, 39mpd 13 . 2  |-  ( ph  ->  ( C  e.  L  \/  D  e.  U
) )
4115, 26, 40mpjaodan 793 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348   F. wfal 1353    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   (/)c0 3414   class class class wbr 3989  (class class class)co 5853   RRcr 7773    < clt 7954   [,]cicc 9848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-icc 9852
This theorem is referenced by:  dedekindicclemicc  13404
  Copyright terms: Public domain W3C validator