ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemeu Unicode version

Theorem dedekindicclemeu 15136
Description: Lemma for dedekindicc 15138. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicc.ab  |-  ( ph  ->  A  <  B )
dedekindicclemeu.are  |-  ( ph  ->  C  e.  ( A [,] B ) )
dedekindicclemeu.ac  |-  ( ph  ->  ( A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )
dedekindicclemeu.bre  |-  ( ph  ->  D  e.  ( A [,] B ) )
dedekindicclemeu.bc  |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r ) )
dedekindicclemeu.lt  |-  ( ph  ->  C  <  D )
Assertion
Ref Expression
dedekindicclemeu  |-  ( ph  -> F.  )
Distinct variable groups:    A, q, r    B, q, r    C, q, r    D, r    L, q, r    U, q, r
Allowed substitution hints:    ph( r, q)    D( q)

Proof of Theorem dedekindicclemeu
StepHypRef Expression
1 breq1 4048 . . . 4  |-  ( q  =  C  ->  (
q  <  C  <->  C  <  C ) )
2 dedekindicclemeu.ac . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )
32simpld 112 . . . . 5  |-  ( ph  ->  A. q  e.  L  q  <  C )
43adantr 276 . . . 4  |-  ( (
ph  /\  C  e.  L )  ->  A. q  e.  L  q  <  C )
5 simpr 110 . . . 4  |-  ( (
ph  /\  C  e.  L )  ->  C  e.  L )
61, 4, 5rspcdva 2882 . . 3  |-  ( (
ph  /\  C  e.  L )  ->  C  <  C )
7 dedekindicc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
8 dedekindicc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
9 iccssre 10079 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
107, 8, 9syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
11 dedekindicclemeu.are . . . . . 6  |-  ( ph  ->  C  e.  ( A [,] B ) )
1210, 11sseldd 3194 . . . . 5  |-  ( ph  ->  C  e.  RR )
1312ltnrd 8186 . . . 4  |-  ( ph  ->  -.  C  <  C
)
1413adantr 276 . . 3  |-  ( (
ph  /\  C  e.  L )  ->  -.  C  <  C )
156, 14pm2.21fal 1393 . 2  |-  ( (
ph  /\  C  e.  L )  -> F.  )
16 breq2 4049 . . . 4  |-  ( r  =  D  ->  ( D  <  r  <->  D  <  D ) )
17 dedekindicclemeu.bc . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r ) )
1817simprd 114 . . . . 5  |-  ( ph  ->  A. r  e.  U  D  <  r )
1918adantr 276 . . . 4  |-  ( (
ph  /\  D  e.  U )  ->  A. r  e.  U  D  <  r )
20 simpr 110 . . . 4  |-  ( (
ph  /\  D  e.  U )  ->  D  e.  U )
2116, 19, 20rspcdva 2882 . . 3  |-  ( (
ph  /\  D  e.  U )  ->  D  <  D )
22 dedekindicclemeu.bre . . . . . 6  |-  ( ph  ->  D  e.  ( A [,] B ) )
2310, 22sseldd 3194 . . . . 5  |-  ( ph  ->  D  e.  RR )
2423ltnrd 8186 . . . 4  |-  ( ph  ->  -.  D  <  D
)
2524adantr 276 . . 3  |-  ( (
ph  /\  D  e.  U )  ->  -.  D  <  D )
2621, 25pm2.21fal 1393 . 2  |-  ( (
ph  /\  D  e.  U )  -> F.  )
27 dedekindicclemeu.lt . . 3  |-  ( ph  ->  C  <  D )
28 breq2 4049 . . . . 5  |-  ( r  =  D  ->  ( C  <  r  <->  C  <  D ) )
29 eleq1 2268 . . . . . 6  |-  ( r  =  D  ->  (
r  e.  U  <->  D  e.  U ) )
3029orbi2d 792 . . . . 5  |-  ( r  =  D  ->  (
( C  e.  L  \/  r  e.  U
)  <->  ( C  e.  L  \/  D  e.  U ) ) )
3128, 30imbi12d 234 . . . 4  |-  ( r  =  D  ->  (
( C  <  r  ->  ( C  e.  L  \/  r  e.  U
) )  <->  ( C  <  D  ->  ( C  e.  L  \/  D  e.  U ) ) ) )
32 breq1 4048 . . . . . . 7  |-  ( q  =  C  ->  (
q  <  r  <->  C  <  r ) )
33 eleq1 2268 . . . . . . . 8  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3433orbi1d 793 . . . . . . 7  |-  ( q  =  C  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( C  e.  L  \/  r  e.  U ) ) )
3532, 34imbi12d 234 . . . . . 6  |-  ( q  =  C  ->  (
( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( C  <  r  ->  ( C  e.  L  \/  r  e.  U ) ) ) )
3635ralbidv 2506 . . . . 5  |-  ( q  =  C  ->  ( A. r  e.  ( A [,] B ) ( q  <  r  -> 
( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  ( A [,] B
) ( C  < 
r  ->  ( C  e.  L  \/  r  e.  U ) ) ) )
37 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
3836, 37, 11rspcdva 2882 . . . 4  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( C  <  r  ->  ( C  e.  L  \/  r  e.  U
) ) )
3931, 38, 22rspcdva 2882 . . 3  |-  ( ph  ->  ( C  <  D  ->  ( C  e.  L  \/  D  e.  U
) ) )
4027, 39mpd 13 . 2  |-  ( ph  ->  ( C  e.  L  \/  D  e.  U
) )
4115, 26, 40mpjaodan 800 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373   F. wfal 1378    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   (/)c0 3460   class class class wbr 4045  (class class class)co 5946   RRcr 7926    < clt 8109   [,]cicc 10015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-po 4344  df-iso 4345  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-icc 10019
This theorem is referenced by:  dedekindicclemicc  15137
  Copyright terms: Public domain W3C validator