ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindicclemeu Unicode version

Theorem dedekindicclemeu 14867
Description: Lemma for dedekindicc 14869. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.)
Hypotheses
Ref Expression
dedekindicc.a  |-  ( ph  ->  A  e.  RR )
dedekindicc.b  |-  ( ph  ->  B  e.  RR )
dedekindicc.lss  |-  ( ph  ->  L  C_  ( A [,] B ) )
dedekindicc.uss  |-  ( ph  ->  U  C_  ( A [,] B ) )
dedekindicc.lm  |-  ( ph  ->  E. q  e.  ( A [,] B ) q  e.  L )
dedekindicc.um  |-  ( ph  ->  E. r  e.  ( A [,] B ) r  e.  U )
dedekindicc.lr  |-  ( ph  ->  A. q  e.  ( A [,] B ) ( q  e.  L  <->  E. r  e.  L  q  <  r ) )
dedekindicc.ur  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( r  e.  U  <->  E. q  e.  U  q  <  r ) )
dedekindicc.disj  |-  ( ph  ->  ( L  i^i  U
)  =  (/) )
dedekindicc.loc  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
dedekindicc.ab  |-  ( ph  ->  A  <  B )
dedekindicclemeu.are  |-  ( ph  ->  C  e.  ( A [,] B ) )
dedekindicclemeu.ac  |-  ( ph  ->  ( A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )
dedekindicclemeu.bre  |-  ( ph  ->  D  e.  ( A [,] B ) )
dedekindicclemeu.bc  |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r ) )
dedekindicclemeu.lt  |-  ( ph  ->  C  <  D )
Assertion
Ref Expression
dedekindicclemeu  |-  ( ph  -> F.  )
Distinct variable groups:    A, q, r    B, q, r    C, q, r    D, r    L, q, r    U, q, r
Allowed substitution hints:    ph( r, q)    D( q)

Proof of Theorem dedekindicclemeu
StepHypRef Expression
1 breq1 4036 . . . 4  |-  ( q  =  C  ->  (
q  <  C  <->  C  <  C ) )
2 dedekindicclemeu.ac . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  C  /\  A. r  e.  U  C  <  r ) )
32simpld 112 . . . . 5  |-  ( ph  ->  A. q  e.  L  q  <  C )
43adantr 276 . . . 4  |-  ( (
ph  /\  C  e.  L )  ->  A. q  e.  L  q  <  C )
5 simpr 110 . . . 4  |-  ( (
ph  /\  C  e.  L )  ->  C  e.  L )
61, 4, 5rspcdva 2873 . . 3  |-  ( (
ph  /\  C  e.  L )  ->  C  <  C )
7 dedekindicc.a . . . . . . 7  |-  ( ph  ->  A  e.  RR )
8 dedekindicc.b . . . . . . 7  |-  ( ph  ->  B  e.  RR )
9 iccssre 10030 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
107, 8, 9syl2anc 411 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  RR )
11 dedekindicclemeu.are . . . . . 6  |-  ( ph  ->  C  e.  ( A [,] B ) )
1210, 11sseldd 3184 . . . . 5  |-  ( ph  ->  C  e.  RR )
1312ltnrd 8138 . . . 4  |-  ( ph  ->  -.  C  <  C
)
1413adantr 276 . . 3  |-  ( (
ph  /\  C  e.  L )  ->  -.  C  <  C )
156, 14pm2.21fal 1384 . 2  |-  ( (
ph  /\  C  e.  L )  -> F.  )
16 breq2 4037 . . . 4  |-  ( r  =  D  ->  ( D  <  r  <->  D  <  D ) )
17 dedekindicclemeu.bc . . . . . 6  |-  ( ph  ->  ( A. q  e.  L  q  <  D  /\  A. r  e.  U  D  <  r ) )
1817simprd 114 . . . . 5  |-  ( ph  ->  A. r  e.  U  D  <  r )
1918adantr 276 . . . 4  |-  ( (
ph  /\  D  e.  U )  ->  A. r  e.  U  D  <  r )
20 simpr 110 . . . 4  |-  ( (
ph  /\  D  e.  U )  ->  D  e.  U )
2116, 19, 20rspcdva 2873 . . 3  |-  ( (
ph  /\  D  e.  U )  ->  D  <  D )
22 dedekindicclemeu.bre . . . . . 6  |-  ( ph  ->  D  e.  ( A [,] B ) )
2310, 22sseldd 3184 . . . . 5  |-  ( ph  ->  D  e.  RR )
2423ltnrd 8138 . . . 4  |-  ( ph  ->  -.  D  <  D
)
2524adantr 276 . . 3  |-  ( (
ph  /\  D  e.  U )  ->  -.  D  <  D )
2621, 25pm2.21fal 1384 . 2  |-  ( (
ph  /\  D  e.  U )  -> F.  )
27 dedekindicclemeu.lt . . 3  |-  ( ph  ->  C  <  D )
28 breq2 4037 . . . . 5  |-  ( r  =  D  ->  ( C  <  r  <->  C  <  D ) )
29 eleq1 2259 . . . . . 6  |-  ( r  =  D  ->  (
r  e.  U  <->  D  e.  U ) )
3029orbi2d 791 . . . . 5  |-  ( r  =  D  ->  (
( C  e.  L  \/  r  e.  U
)  <->  ( C  e.  L  \/  D  e.  U ) ) )
3128, 30imbi12d 234 . . . 4  |-  ( r  =  D  ->  (
( C  <  r  ->  ( C  e.  L  \/  r  e.  U
) )  <->  ( C  <  D  ->  ( C  e.  L  \/  D  e.  U ) ) ) )
32 breq1 4036 . . . . . . 7  |-  ( q  =  C  ->  (
q  <  r  <->  C  <  r ) )
33 eleq1 2259 . . . . . . . 8  |-  ( q  =  C  ->  (
q  e.  L  <->  C  e.  L ) )
3433orbi1d 792 . . . . . . 7  |-  ( q  =  C  ->  (
( q  e.  L  \/  r  e.  U
)  <->  ( C  e.  L  \/  r  e.  U ) ) )
3532, 34imbi12d 234 . . . . . 6  |-  ( q  =  C  ->  (
( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) )  <->  ( C  <  r  ->  ( C  e.  L  \/  r  e.  U ) ) ) )
3635ralbidv 2497 . . . . 5  |-  ( q  =  C  ->  ( A. r  e.  ( A [,] B ) ( q  <  r  -> 
( q  e.  L  \/  r  e.  U
) )  <->  A. r  e.  ( A [,] B
) ( C  < 
r  ->  ( C  e.  L  \/  r  e.  U ) ) ) )
37 dedekindicc.loc . . . . 5  |-  ( ph  ->  A. q  e.  ( A [,] B ) A. r  e.  ( A [,] B ) ( q  <  r  ->  ( q  e.  L  \/  r  e.  U
) ) )
3836, 37, 11rspcdva 2873 . . . 4  |-  ( ph  ->  A. r  e.  ( A [,] B ) ( C  <  r  ->  ( C  e.  L  \/  r  e.  U
) ) )
3931, 38, 22rspcdva 2873 . . 3  |-  ( ph  ->  ( C  <  D  ->  ( C  e.  L  \/  D  e.  U
) ) )
4027, 39mpd 13 . 2  |-  ( ph  ->  ( C  e.  L  \/  D  e.  U
) )
4115, 26, 40mpjaodan 799 1  |-  ( ph  -> F.  )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364   F. wfal 1369    e. wcel 2167   A.wral 2475   E.wrex 2476    i^i cin 3156    C_ wss 3157   (/)c0 3450   class class class wbr 4033  (class class class)co 5922   RRcr 7878    < clt 8061   [,]cicc 9966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-icc 9970
This theorem is referenced by:  dedekindicclemicc  14868
  Copyright terms: Public domain W3C validator