Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dedekindicclemeu | Unicode version |
Description: Lemma for dedekindicc 13680. Part of proving uniqueness. (Contributed by Jim Kingdon, 15-Feb-2024.) |
Ref | Expression |
---|---|
dedekindicc.a | |
dedekindicc.b | |
dedekindicc.lss | |
dedekindicc.uss | |
dedekindicc.lm | |
dedekindicc.um | |
dedekindicc.lr | |
dedekindicc.ur | |
dedekindicc.disj | |
dedekindicc.loc | |
dedekindicc.ab | |
dedekindicclemeu.are | |
dedekindicclemeu.ac | |
dedekindicclemeu.bre | |
dedekindicclemeu.bc | |
dedekindicclemeu.lt |
Ref | Expression |
---|---|
dedekindicclemeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4001 | . . . 4 | |
2 | dedekindicclemeu.ac | . . . . . 6 | |
3 | 2 | simpld 112 | . . . . 5 |
4 | 3 | adantr 276 | . . . 4 |
5 | simpr 110 | . . . 4 | |
6 | 1, 4, 5 | rspcdva 2844 | . . 3 |
7 | dedekindicc.a | . . . . . . 7 | |
8 | dedekindicc.b | . . . . . . 7 | |
9 | iccssre 9924 | . . . . . . 7 | |
10 | 7, 8, 9 | syl2anc 411 | . . . . . 6 |
11 | dedekindicclemeu.are | . . . . . 6 | |
12 | 10, 11 | sseldd 3154 | . . . . 5 |
13 | 12 | ltnrd 8043 | . . . 4 |
14 | 13 | adantr 276 | . . 3 |
15 | 6, 14 | pm2.21fal 1373 | . 2 |
16 | breq2 4002 | . . . 4 | |
17 | dedekindicclemeu.bc | . . . . . 6 | |
18 | 17 | simprd 114 | . . . . 5 |
19 | 18 | adantr 276 | . . . 4 |
20 | simpr 110 | . . . 4 | |
21 | 16, 19, 20 | rspcdva 2844 | . . 3 |
22 | dedekindicclemeu.bre | . . . . . 6 | |
23 | 10, 22 | sseldd 3154 | . . . . 5 |
24 | 23 | ltnrd 8043 | . . . 4 |
25 | 24 | adantr 276 | . . 3 |
26 | 21, 25 | pm2.21fal 1373 | . 2 |
27 | dedekindicclemeu.lt | . . 3 | |
28 | breq2 4002 | . . . . 5 | |
29 | eleq1 2238 | . . . . . 6 | |
30 | 29 | orbi2d 790 | . . . . 5 |
31 | 28, 30 | imbi12d 234 | . . . 4 |
32 | breq1 4001 | . . . . . . 7 | |
33 | eleq1 2238 | . . . . . . . 8 | |
34 | 33 | orbi1d 791 | . . . . . . 7 |
35 | 32, 34 | imbi12d 234 | . . . . . 6 |
36 | 35 | ralbidv 2475 | . . . . 5 |
37 | dedekindicc.loc | . . . . 5 | |
38 | 36, 37, 11 | rspcdva 2844 | . . . 4 |
39 | 31, 38, 22 | rspcdva 2844 | . . 3 |
40 | 27, 39 | mpd 13 | . 2 |
41 | 15, 26, 40 | mpjaodan 798 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 104 wb 105 wo 708 wceq 1353 wfal 1358 wcel 2146 wral 2453 wrex 2454 cin 3126 wss 3127 c0 3420 class class class wbr 3998 (class class class)co 5865 cr 7785 clt 7966 cicc 9860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-icc 9864 |
This theorem is referenced by: dedekindicclemicc 13679 |
Copyright terms: Public domain | W3C validator |