ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri Unicode version

Theorem soirri 5077
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
soirri  |-  -.  A R A

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2  |-  ( A R A  ->  A R A )
2 soi.1 . . 3  |-  R  Or  S
3 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
43brel 4727 . . . 4  |-  ( A R A  ->  ( A  e.  S  /\  A  e.  S )
)
54simpld 112 . . 3  |-  ( A R A  ->  A  e.  S )
6 sonr 4364 . . 3  |-  ( ( R  Or  S  /\  A  e.  S )  ->  -.  A R A )
72, 5, 6sylancr 414 . 2  |-  ( A R A  ->  -.  A R A )
81, 7pm2.65i 640 1  |-  -.  A R A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2176    C_ wss 3166   class class class wbr 4044    Or wor 4342    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-po 4343  df-iso 4344  df-xp 4681
This theorem is referenced by:  son2lpi  5079  ltsonq  7511  genpdisj  7636  ltposr  7876  axpre-ltirr  7995
  Copyright terms: Public domain W3C validator