ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri Unicode version

Theorem soirri 5076
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
soirri  |-  -.  A R A

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2  |-  ( A R A  ->  A R A )
2 soi.1 . . 3  |-  R  Or  S
3 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
43brel 4726 . . . 4  |-  ( A R A  ->  ( A  e.  S  /\  A  e.  S )
)
54simpld 112 . . 3  |-  ( A R A  ->  A  e.  S )
6 sonr 4363 . . 3  |-  ( ( R  Or  S  /\  A  e.  S )  ->  -.  A R A )
72, 5, 6sylancr 414 . 2  |-  ( A R A  ->  -.  A R A )
81, 7pm2.65i 640 1  |-  -.  A R A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2175    C_ wss 3165   class class class wbr 4043    Or wor 4341    X. cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-po 4342  df-iso 4343  df-xp 4680
This theorem is referenced by:  son2lpi  5078  ltsonq  7510  genpdisj  7635  ltposr  7875  axpre-ltirr  7994
  Copyright terms: Public domain W3C validator