ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soirri Unicode version

Theorem soirri 5005
Description: A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
soirri  |-  -.  A R A

Proof of Theorem soirri
StepHypRef Expression
1 id 19 . 2  |-  ( A R A  ->  A R A )
2 soi.1 . . 3  |-  R  Or  S
3 soi.2 . . . . 5  |-  R  C_  ( S  X.  S
)
43brel 4663 . . . 4  |-  ( A R A  ->  ( A  e.  S  /\  A  e.  S )
)
54simpld 111 . . 3  |-  ( A R A  ->  A  e.  S )
6 sonr 4302 . . 3  |-  ( ( R  Or  S  /\  A  e.  S )  ->  -.  A R A )
72, 5, 6sylancr 412 . 2  |-  ( A R A  ->  -.  A R A )
81, 7pm2.65i 634 1  |-  -.  A R A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2141    C_ wss 3121   class class class wbr 3989    Or wor 4280    X. cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-po 4281  df-iso 4282  df-xp 4617
This theorem is referenced by:  son2lpi  5007  ltsonq  7360  genpdisj  7485  ltposr  7725  axpre-ltirr  7844
  Copyright terms: Public domain W3C validator