ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prm Unicode version

Theorem prm 3716
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Hypothesis
Ref Expression
prnz.1  |-  A  e. 
_V
Assertion
Ref Expression
prm  |-  E. x  x  e.  { A ,  B }
Distinct variable groups:    x, A    x, B

Proof of Theorem prm
StepHypRef Expression
1 prnz.1 . 2  |-  A  e. 
_V
2 prmg 3714 . 2  |-  ( A  e.  _V  ->  E. x  x  e.  { A ,  B } )
31, 2ax-mp 5 1  |-  E. x  x  e.  { A ,  B }
Colors of variables: wff set class
Syntax hints:   E.wex 1492    e. wcel 2148   _Vcvv 2738   {cpr 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator