Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prm Unicode version

Theorem prm 3656
 Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Hypothesis
Ref Expression
prnz.1
Assertion
Ref Expression
prm
Distinct variable groups:   ,   ,

Proof of Theorem prm
StepHypRef Expression
1 prnz.1 . 2
2 prmg 3654 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:  wex 1469   wcel 2112  cvv 2691  cpr 3535 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2123 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1732  df-clab 2128  df-cleq 2134  df-clel 2137  df-nfc 2272  df-v 2693  df-un 3082  df-sn 3540  df-pr 3541 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator