ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnz Unicode version

Theorem prnz 3745
Description: A pair containing a set is not empty. It is also inhabited (see prm 3746). (Contributed by NM, 9-Apr-1994.)
Hypothesis
Ref Expression
prnz.1  |-  A  e. 
_V
Assertion
Ref Expression
prnz  |-  { A ,  B }  =/=  (/)

Proof of Theorem prnz
StepHypRef Expression
1 prnz.1 . . 3  |-  A  e. 
_V
21prid1 3729 . 2  |-  A  e. 
{ A ,  B }
3 ne0i 3458 . 2  |-  ( A  e.  { A ,  B }  ->  { A ,  B }  =/=  (/) )
42, 3ax-mp 5 1  |-  { A ,  B }  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2167    =/= wne 2367   _Vcvv 2763   (/)c0 3451   {cpr 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-nul 3452  df-sn 3629  df-pr 3630
This theorem is referenced by:  prnzg  3747
  Copyright terms: Public domain W3C validator