ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmg Unicode version

Theorem prmg 3739
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
prmg  |-  ( A  e.  V  ->  E. x  x  e.  { A ,  B } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem prmg
StepHypRef Expression
1 snmg 3736 . 2  |-  ( A  e.  V  ->  E. x  x  e.  { A } )
2 orc 713 . . . 4  |-  ( x  =  A  ->  (
x  =  A  \/  x  =  B )
)
3 velsn 3635 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
4 vex 2763 . . . . 5  |-  x  e. 
_V
54elpr 3639 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
62, 3, 53imtr4i 201 . . 3  |-  ( x  e.  { A }  ->  x  e.  { A ,  B } )
76eximi 1611 . 2  |-  ( E. x  x  e.  { A }  ->  E. x  x  e.  { A ,  B } )
81, 7syl 14 1  |-  ( A  e.  V  ->  E. x  x  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   {csn 3618   {cpr 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625
This theorem is referenced by:  prm  3741  opm  4263  onintexmid  4605  subrngin  13709  subrgin  13740  lssincl  13881
  Copyright terms: Public domain W3C validator