ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmg Unicode version

Theorem prmg 3789
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.)
Assertion
Ref Expression
prmg  |-  ( A  e.  V  ->  E. x  x  e.  { A ,  B } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem prmg
StepHypRef Expression
1 snmg 3785 . 2  |-  ( A  e.  V  ->  E. x  x  e.  { A } )
2 orc 717 . . . 4  |-  ( x  =  A  ->  (
x  =  A  \/  x  =  B )
)
3 velsn 3683 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
4 vex 2802 . . . . 5  |-  x  e. 
_V
54elpr 3687 . . . 4  |-  ( x  e.  { A ,  B }  <->  ( x  =  A  \/  x  =  B ) )
62, 3, 53imtr4i 201 . . 3  |-  ( x  e.  { A }  ->  x  e.  { A ,  B } )
76eximi 1646 . 2  |-  ( E. x  x  e.  { A }  ->  E. x  x  e.  { A ,  B } )
81, 7syl 14 1  |-  ( A  e.  V  ->  E. x  x  e.  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673
This theorem is referenced by:  prm  3791  opm  4320  onintexmid  4665  subrngin  14177  subrgin  14208  lssincl  14349  wlkvtxiedg  16056  wlkvtxiedgg  16057
  Copyright terms: Public domain W3C validator