Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prm | GIF version |
Description: A pair containing a set is inhabited. (Contributed by Jim Kingdon, 21-Sep-2018.) |
Ref | Expression |
---|---|
prnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
prm | ⊢ ∃𝑥 𝑥 ∈ {𝐴, 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnz.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prmg 3676 | . 2 ⊢ (𝐴 ∈ V → ∃𝑥 𝑥 ∈ {𝐴, 𝐵}) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ∃𝑥 𝑥 ∈ {𝐴, 𝐵} |
Colors of variables: wff set class |
Syntax hints: ∃wex 1469 ∈ wcel 2125 Vcvv 2709 {cpr 3557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |