![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prprc | GIF version |
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc | ⊢ ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 3597 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵}) | |
2 | snprc 3554 | . . 3 ⊢ (¬ 𝐵 ∈ V ↔ {𝐵} = ∅) | |
3 | 2 | biimpi 119 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵} = ∅) |
4 | 1, 3 | sylan9eq 2167 | 1 ⊢ ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 Vcvv 2657 ∅c0 3329 {csn 3493 {cpr 3494 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 |
This theorem depends on definitions: df-bi 116 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-v 2659 df-dif 3039 df-un 3041 df-nul 3330 df-sn 3499 df-pr 3500 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |