ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc GIF version

Theorem prprc 3599
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)

Proof of Theorem prprc
StepHypRef Expression
1 prprc1 3597 . 2 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
2 snprc 3554 . . 3 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 119 . 2 𝐵 ∈ V → {𝐵} = ∅)
41, 3sylan9eq 2167 1 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1314  wcel 1463  Vcvv 2657  c0 3329  {csn 3493  {cpr 3494
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-v 2659  df-dif 3039  df-un 3041  df-nul 3330  df-sn 3499  df-pr 3500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator