ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prprc GIF version

Theorem prprc 3732
Description: An unordered pair containing two proper classes is the empty set. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
prprc ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)

Proof of Theorem prprc
StepHypRef Expression
1 prprc1 3730 . 2 𝐴 ∈ V → {𝐴, 𝐵} = {𝐵})
2 snprc 3687 . . 3 𝐵 ∈ V ↔ {𝐵} = ∅)
32biimpi 120 . 2 𝐵 ∈ V → {𝐵} = ∅)
41, 3sylan9eq 2249 1 ((¬ 𝐴 ∈ V ∧ ¬ 𝐵 ∈ V) → {𝐴, 𝐵} = ∅)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wcel 2167  Vcvv 2763  c0 3450  {csn 3622  {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator