Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snprc | Unicode version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3600 | . . . 4 | |
2 | 1 | exbii 1598 | . . 3 |
3 | 2 | notbii 663 | . 2 |
4 | eq0 3433 | . . 3 | |
5 | alnex 1492 | . . 3 | |
6 | 4, 5 | bitri 183 | . 2 |
7 | isset 2736 | . . 3 | |
8 | 7 | notbii 663 | . 2 |
9 | 3, 6, 8 | 3bitr4ri 212 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 104 wal 1346 wceq 1348 wex 1485 wcel 2141 cvv 2730 c0 3414 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-dif 3123 df-nul 3415 df-sn 3589 |
This theorem is referenced by: prprc1 3691 prprc 3693 snexprc 4172 sucprc 4397 snnen2oprc 6838 unsnfidcex 6897 |
Copyright terms: Public domain | W3C validator |