ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc Unicode version

Theorem snprc 3654
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )

Proof of Theorem snprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3606 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21exbii 1603 . . 3  |-  ( E. x  x  e.  { A }  <->  E. x  x  =  A )
32notbii 668 . 2  |-  ( -. 
E. x  x  e. 
{ A }  <->  -.  E. x  x  =  A )
4 eq0 3439 . . 3  |-  ( { A }  =  (/)  <->  A. x  -.  x  e.  { A } )
5 alnex 1497 . . 3  |-  ( A. x  -.  x  e.  { A }  <->  -.  E. x  x  e.  { A } )
64, 5bitri 184 . 2  |-  ( { A }  =  (/)  <->  -.  E. x  x  e.  { A } )
7 isset 2741 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
87notbii 668 . 2  |-  ( -.  A  e.  _V  <->  -.  E. x  x  =  A )
93, 6, 83bitr4ri 213 1  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1490    e. wcel 2146   _Vcvv 2735   (/)c0 3420   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-dif 3129  df-nul 3421  df-sn 3595
This theorem is referenced by:  prprc1  3697  prprc  3699  snexprc  4181  sucprc  4406  snnen2oprc  6850  unsnfidcex  6909
  Copyright terms: Public domain W3C validator