ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc Unicode version

Theorem snprc 3659
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )

Proof of Theorem snprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3611 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21exbii 1605 . . 3  |-  ( E. x  x  e.  { A }  <->  E. x  x  =  A )
32notbii 668 . 2  |-  ( -. 
E. x  x  e. 
{ A }  <->  -.  E. x  x  =  A )
4 eq0 3443 . . 3  |-  ( { A }  =  (/)  <->  A. x  -.  x  e.  { A } )
5 alnex 1499 . . 3  |-  ( A. x  -.  x  e.  { A }  <->  -.  E. x  x  e.  { A } )
64, 5bitri 184 . 2  |-  ( { A }  =  (/)  <->  -.  E. x  x  e.  { A } )
7 isset 2745 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
87notbii 668 . 2  |-  ( -.  A  e.  _V  <->  -.  E. x  x  =  A )
93, 6, 83bitr4ri 213 1  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1351    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   (/)c0 3424   {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-dif 3133  df-nul 3425  df-sn 3600
This theorem is referenced by:  prprc1  3702  prprc  3704  snexprc  4188  sucprc  4414  snnen2oprc  6862  unsnfidcex  6921
  Copyright terms: Public domain W3C validator