ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc Unicode version

Theorem snprc 3698
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )

Proof of Theorem snprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3650 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21exbii 1628 . . 3  |-  ( E. x  x  e.  { A }  <->  E. x  x  =  A )
32notbii 670 . 2  |-  ( -. 
E. x  x  e. 
{ A }  <->  -.  E. x  x  =  A )
4 eq0 3479 . . 3  |-  ( { A }  =  (/)  <->  A. x  -.  x  e.  { A } )
5 alnex 1522 . . 3  |-  ( A. x  -.  x  e.  { A }  <->  -.  E. x  x  e.  { A } )
64, 5bitri 184 . 2  |-  ( { A }  =  (/)  <->  -.  E. x  x  e.  { A } )
7 isset 2778 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
87notbii 670 . 2  |-  ( -.  A  e.  _V  <->  -.  E. x  x  =  A )
93, 6, 83bitr4ri 213 1  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1371    = wceq 1373   E.wex 1515    e. wcel 2176   _Vcvv 2772   (/)c0 3460   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-nul 3461  df-sn 3639
This theorem is referenced by:  prprc1  3741  prprc  3743  snexprc  4230  sucprc  4459  snnen2oprc  6957  unsnfidcex  7017
  Copyright terms: Public domain W3C validator