ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc Unicode version

Theorem snprc 3687
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )

Proof of Theorem snprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3639 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21exbii 1619 . . 3  |-  ( E. x  x  e.  { A }  <->  E. x  x  =  A )
32notbii 669 . 2  |-  ( -. 
E. x  x  e. 
{ A }  <->  -.  E. x  x  =  A )
4 eq0 3469 . . 3  |-  ( { A }  =  (/)  <->  A. x  -.  x  e.  { A } )
5 alnex 1513 . . 3  |-  ( A. x  -.  x  e.  { A }  <->  -.  E. x  x  e.  { A } )
64, 5bitri 184 . 2  |-  ( { A }  =  (/)  <->  -.  E. x  x  e.  { A } )
7 isset 2769 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
87notbii 669 . 2  |-  ( -.  A  e.  _V  <->  -.  E. x  x  =  A )
93, 6, 83bitr4ri 213 1  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   _Vcvv 2763   (/)c0 3450   {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-nul 3451  df-sn 3628
This theorem is referenced by:  prprc1  3730  prprc  3732  snexprc  4219  sucprc  4447  snnen2oprc  6921  unsnfidcex  6981
  Copyright terms: Public domain W3C validator