ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snprc Unicode version

Theorem snprc 3648
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
snprc  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )

Proof of Theorem snprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 velsn 3600 . . . 4  |-  ( x  e.  { A }  <->  x  =  A )
21exbii 1598 . . 3  |-  ( E. x  x  e.  { A }  <->  E. x  x  =  A )
32notbii 663 . 2  |-  ( -. 
E. x  x  e. 
{ A }  <->  -.  E. x  x  =  A )
4 eq0 3433 . . 3  |-  ( { A }  =  (/)  <->  A. x  -.  x  e.  { A } )
5 alnex 1492 . . 3  |-  ( A. x  -.  x  e.  { A }  <->  -.  E. x  x  e.  { A } )
64, 5bitri 183 . 2  |-  ( { A }  =  (/)  <->  -.  E. x  x  e.  { A } )
7 isset 2736 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
87notbii 663 . 2  |-  ( -.  A  e.  _V  <->  -.  E. x  x  =  A )
93, 6, 83bitr4ri 212 1  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   _Vcvv 2730   (/)c0 3414   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-dif 3123  df-nul 3415  df-sn 3589
This theorem is referenced by:  prprc1  3691  prprc  3693  snexprc  4172  sucprc  4397  snnen2oprc  6838  unsnfidcex  6897
  Copyright terms: Public domain W3C validator