Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > snprc | Unicode version |
Description: The singleton of a proper class (one that doesn't exist) is the empty set. Theorem 7.2 of [Quine] p. 48. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
snprc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velsn 3606 | . . . 4 | |
2 | 1 | exbii 1603 | . . 3 |
3 | 2 | notbii 668 | . 2 |
4 | eq0 3439 | . . 3 | |
5 | alnex 1497 | . . 3 | |
6 | 4, 5 | bitri 184 | . 2 |
7 | isset 2741 | . . 3 | |
8 | 7 | notbii 668 | . 2 |
9 | 3, 6, 8 | 3bitr4ri 213 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 105 wal 1351 wceq 1353 wex 1490 wcel 2146 cvv 2735 c0 3420 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-dif 3129 df-nul 3421 df-sn 3595 |
This theorem is referenced by: prprc1 3697 prprc 3699 snexprc 4181 sucprc 4406 snnen2oprc 6850 unsnfidcex 6909 |
Copyright terms: Public domain | W3C validator |