ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwssb Unicode version

Theorem pwssb 4003
Description: Two ways to express a collection of subclasses. (Contributed by NM, 19-Jul-2006.)
Assertion
Ref Expression
pwssb  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  C_  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem pwssb
StepHypRef Expression
1 sspwuni 4002 . 2  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
2 unissb 3870 . 2  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
31, 2bitri 184 1  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  C_  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105   A.wral 2475    C_ wss 3157   ~Pcpw 3606   U.cuni 3840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3608  df-uni 3841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator