ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpw Unicode version

Theorem elpwpw 3999
Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwpw  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)

Proof of Theorem elpwpw
StepHypRef Expression
1 elpwb 3611 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  A  C_  ~P B ) )
2 sspwuni 3997 . . 3  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
32anbi2i 457 . 2  |-  ( ( A  e.  _V  /\  A  C_  ~P B )  <-> 
( A  e.  _V  /\ 
U. A  C_  B
) )
41, 3bitri 184 1  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2164   _Vcvv 2760    C_ wss 3153   ~Pcpw 3601   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-uni 3836
This theorem is referenced by:  pwpwab  4000  elpwpwel  4506
  Copyright terms: Public domain W3C validator