ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpw Unicode version

Theorem elpwpw 4014
Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwpw  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)

Proof of Theorem elpwpw
StepHypRef Expression
1 elpwb 3626 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  A  C_  ~P B ) )
2 sspwuni 4012 . . 3  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
32anbi2i 457 . 2  |-  ( ( A  e.  _V  /\  A  C_  ~P B )  <-> 
( A  e.  _V  /\ 
U. A  C_  B
) )
41, 3bitri 184 1  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2176   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851
This theorem is referenced by:  pwpwab  4015  elpwpwel  4522
  Copyright terms: Public domain W3C validator