ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpw Unicode version

Theorem elpwpw 4052
Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwpw  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)

Proof of Theorem elpwpw
StepHypRef Expression
1 elpwb 3659 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  A  C_  ~P B ) )
2 sspwuni 4050 . . 3  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
32anbi2i 457 . 2  |-  ( ( A  e.  _V  /\  A  C_  ~P B )  <-> 
( A  e.  _V  /\ 
U. A  C_  B
) )
41, 3bitri 184 1  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2200   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889
This theorem is referenced by:  pwpwab  4053  elpwpwel  4566
  Copyright terms: Public domain W3C validator