ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwpw Unicode version

Theorem elpwpw 3959
Description: Characterization of the elements of a double power class: they are exactly the sets whose union is included in that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwpw  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)

Proof of Theorem elpwpw
StepHypRef Expression
1 elpwb 3576 . 2  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  A  C_  ~P B ) )
2 sspwuni 3957 . . 3  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
32anbi2i 454 . 2  |-  ( ( A  e.  _V  /\  A  C_  ~P B )  <-> 
( A  e.  _V  /\ 
U. A  C_  B
) )
41, 3bitri 183 1  |-  ( A  e.  ~P ~P B  <->  ( A  e.  _V  /\  U. A  C_  B )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 2141   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797
This theorem is referenced by:  pwpwab  3960  elpwpwel  4460
  Copyright terms: Public domain W3C validator