Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sspwuni | Unicode version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . 4 | |
2 | 1 | elpw 3570 | . . 3 |
3 | 2 | ralbii 2476 | . 2 |
4 | dfss3 3137 | . 2 | |
5 | unissb 3824 | . 2 | |
6 | 3, 4, 5 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2141 wral 2448 wss 3121 cpw 3564 cuni 3794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-pw 3566 df-uni 3795 |
This theorem is referenced by: pwssb 3956 elpwpw 3957 elpwuni 3960 rintm 3963 dftr4 4090 iotass 5175 tfrlemibfn 6304 tfr1onlembfn 6320 tfrcllembfn 6333 uniixp 6695 fipwssg 6952 unirnioo 9917 restid 12577 topgele 12780 topontopn 12788 unitg 12815 epttop 12843 resttopon 12924 txuni2 13009 txdis 13030 unirnblps 13175 unirnbl 13176 |
Copyright terms: Public domain | W3C validator |