ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni Unicode version

Theorem sspwuni 3950
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni  |-  ( A 
C_  ~P B  <->  U. A  C_  B )

Proof of Theorem sspwuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . 4  |-  x  e. 
_V
21elpw 3565 . . 3  |-  ( x  e.  ~P B  <->  x  C_  B
)
32ralbii 2472 . 2  |-  ( A. x  e.  A  x  e.  ~P B  <->  A. x  e.  A  x  C_  B
)
4 dfss3 3132 . 2  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  e.  ~P B )
5 unissb 3819 . 2  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
63, 4, 53bitr4i 211 1  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2136   A.wral 2444    C_ wss 3116   ~Pcpw 3559   U.cuni 3789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-uni 3790
This theorem is referenced by:  pwssb  3951  elpwpw  3952  elpwuni  3955  rintm  3958  dftr4  4085  iotass  5170  tfrlemibfn  6296  tfr1onlembfn  6312  tfrcllembfn  6325  uniixp  6687  fipwssg  6944  unirnioo  9909  restid  12567  topgele  12677  topontopn  12685  unitg  12712  epttop  12740  resttopon  12821  txuni2  12906  txdis  12927  unirnblps  13072  unirnbl  13073
  Copyright terms: Public domain W3C validator