| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwuni | Unicode version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . 4
| |
| 2 | 1 | elpw 3612 |
. . 3
|
| 3 | 2 | ralbii 2503 |
. 2
|
| 4 | dfss3 3173 |
. 2
| |
| 5 | unissb 3870 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-uni 3841 |
| This theorem is referenced by: pwssb 4003 elpwpw 4004 elpwuni 4007 rintm 4010 dftr4 4137 iotass 5237 tfrlemibfn 6395 tfr1onlembfn 6411 tfrcllembfn 6424 uniixp 6789 fipwssg 7054 unirnioo 10065 restid 12952 lssintclm 14016 topgele 14349 topontopn 14357 unitg 14382 epttop 14410 resttopon 14491 txuni2 14576 txdis 14597 unirnblps 14742 unirnbl 14743 |
| Copyright terms: Public domain | W3C validator |