| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwuni | Unicode version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 |
. . . 4
| |
| 2 | 1 | elpw 3622 |
. . 3
|
| 3 | 2 | ralbii 2512 |
. 2
|
| 4 | dfss3 3182 |
. 2
| |
| 5 | unissb 3880 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-uni 3851 |
| This theorem is referenced by: pwssb 4013 elpwpw 4014 elpwuni 4017 rintm 4020 dftr4 4147 iotass 5249 tfrlemibfn 6414 tfr1onlembfn 6430 tfrcllembfn 6443 uniixp 6808 fipwssg 7081 unirnioo 10095 restid 13082 lssintclm 14146 topgele 14501 topontopn 14509 unitg 14534 epttop 14562 resttopon 14643 txuni2 14728 txdis 14749 unirnblps 14894 unirnbl 14895 |
| Copyright terms: Public domain | W3C validator |