| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwuni | Unicode version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 |
. . . 4
| |
| 2 | 1 | elpw 3627 |
. . 3
|
| 3 | 2 | ralbii 2513 |
. 2
|
| 4 | dfss3 3186 |
. 2
| |
| 5 | unissb 3889 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 df-uni 3860 |
| This theorem is referenced by: pwssb 4022 elpwpw 4023 elpwuni 4026 rintm 4029 dftr4 4158 iotass 5263 tfrlemibfn 6432 tfr1onlembfn 6448 tfrcllembfn 6461 uniixp 6826 fipwssg 7102 unirnioo 10125 restid 13167 lssintclm 14231 topgele 14586 topontopn 14594 unitg 14619 epttop 14647 resttopon 14728 txuni2 14813 txdis 14834 unirnblps 14979 unirnbl 14980 |
| Copyright terms: Public domain | W3C validator |