ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwuni Unicode version

Theorem sspwuni 4021
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
sspwuni  |-  ( A 
C_  ~P B  <->  U. A  C_  B )

Proof of Theorem sspwuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . 4  |-  x  e. 
_V
21elpw 3627 . . 3  |-  ( x  e.  ~P B  <->  x  C_  B
)
32ralbii 2513 . 2  |-  ( A. x  e.  A  x  e.  ~P B  <->  A. x  e.  A  x  C_  B
)
4 dfss3 3186 . 2  |-  ( A 
C_  ~P B  <->  A. x  e.  A  x  e.  ~P B )
5 unissb 3889 . 2  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
63, 4, 53bitr4i 212 1  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2177   A.wral 2485    C_ wss 3170   ~Pcpw 3621   U.cuni 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3176  df-ss 3183  df-pw 3623  df-uni 3860
This theorem is referenced by:  pwssb  4022  elpwpw  4023  elpwuni  4026  rintm  4029  dftr4  4158  iotass  5263  tfrlemibfn  6432  tfr1onlembfn  6448  tfrcllembfn  6461  uniixp  6826  fipwssg  7102  unirnioo  10125  restid  13167  lssintclm  14231  topgele  14586  topontopn  14594  unitg  14619  epttop  14647  resttopon  14728  txuni2  14813  txdis  14834  unirnblps  14979  unirnbl  14980
  Copyright terms: Public domain W3C validator