| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwuni | Unicode version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2774 |
. . . 4
| |
| 2 | 1 | elpw 3621 |
. . 3
|
| 3 | 2 | ralbii 2511 |
. 2
|
| 4 | dfss3 3181 |
. 2
| |
| 5 | unissb 3879 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 df-uni 3850 |
| This theorem is referenced by: pwssb 4012 elpwpw 4013 elpwuni 4016 rintm 4019 dftr4 4146 iotass 5248 tfrlemibfn 6413 tfr1onlembfn 6429 tfrcllembfn 6442 uniixp 6807 fipwssg 7080 unirnioo 10094 restid 13053 lssintclm 14117 topgele 14472 topontopn 14480 unitg 14505 epttop 14533 resttopon 14614 txuni2 14699 txdis 14720 unirnblps 14865 unirnbl 14866 |
| Copyright terms: Public domain | W3C validator |