ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.3rmv Unicode version

Theorem r19.3rmv 3417
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.3rmv  |-  ( E. y  y  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem r19.3rmv
StepHypRef Expression
1 nfv 1489 . 2  |-  F/ x ph
21r19.3rm 3415 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1449    e. wcel 1461   A.wral 2388
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-nf 1418  df-cleq 2106  df-clel 2109  df-ral 2393
This theorem is referenced by:  iinconstm  3786  exmidsssnc  4084  cnvpom  5037  ssfilem  6720  diffitest  6732  inffiexmid  6751  ctssexmid  6972  caucvgsrlemasr  7526  resqrexlemgt0  10678
  Copyright terms: Public domain W3C validator