![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.3rmv | Unicode version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
r19.3rmv |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1489 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | r19.3rm 3415 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-cleq 2106 df-clel 2109 df-ral 2393 |
This theorem is referenced by: iinconstm 3786 exmidsssnc 4084 cnvpom 5037 ssfilem 6720 diffitest 6732 inffiexmid 6751 ctssexmid 6972 caucvgsrlemasr 7526 resqrexlemgt0 10678 |
Copyright terms: Public domain | W3C validator |