ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.3rmv Unicode version

Theorem r19.3rmv 3499
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.3rmv  |-  ( E. y  y  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
Distinct variable groups:    x, A    y, A    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem r19.3rmv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ph
21r19.3rm 3497 1  |-  ( E. y  y  e.  A  ->  ( ph  <->  A. x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   E.wex 1480    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-cleq 2158  df-clel 2161  df-ral 2449
This theorem is referenced by:  iinconstm  3875  exmidsssnc  4182  cnvpom  5146  ssfilem  6841  diffitest  6853  inffiexmid  6872  ctssexmid  7114  exmidonfinlem  7149  caucvgsrlemasr  7731  resqrexlemgt0  10962
  Copyright terms: Public domain W3C validator