ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28mv Unicode version

Theorem r19.28mv 3517
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.28mv  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\  A. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.28mv
StepHypRef Expression
1 nfv 1528 . 2  |-  F/ x ph
21r19.28m 3514 1  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\  A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1492    e. wcel 2148   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-cleq 2170  df-clel 2173  df-ral 2460
This theorem is referenced by:  iinrabm  3951  iindif2m  3956  iinin2m  3957  xpiindim  4766  fintm  5403  ixpiinm  6727  neipsm  13794
  Copyright terms: Public domain W3C validator