ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.28mv Unicode version

Theorem r19.28mv 3561
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 6-Aug-2018.)
Assertion
Ref Expression
r19.28mv  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\  A. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.28mv
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ x ph
21r19.28m 3558 1  |-  ( E. x  x  e.  A  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\  A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1516    e. wcel 2178   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-cleq 2200  df-clel 2203  df-ral 2491
This theorem is referenced by:  iinrabm  4004  iindif2m  4009  iinin2m  4010  xpiindim  4833  fintm  5483  ixpiinm  6834  neipsm  14741
  Copyright terms: Public domain W3C validator