| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > r19.28m | GIF version | ||
| Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is inhabited. (Contributed by Jim Kingdon, 5-Aug-2018.) |
| Ref | Expression |
|---|---|
| r19.28m.1 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| r19.28m | ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.26 2623 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | |
| 2 | r19.28m.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | r19.3rm 3539 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) |
| 4 | 3 | anbi1d 465 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| 5 | 1, 4 | bitr4id 199 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-cleq 2189 df-clel 2192 df-ral 2480 |
| This theorem is referenced by: r19.28mv 3543 raaanlem 3555 |
| Copyright terms: Public domain | W3C validator |