ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.45mv GIF version

Theorem r19.45mv 3508
Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.45mv (∃𝑥 𝑥𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.45mv
StepHypRef Expression
1 r19.43 2628 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 r19.9rmv 3506 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ ∃𝑥𝐴 𝜑))
32orbi1d 786 . 2 (∃𝑥 𝑥𝐴 → ((𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
41, 3bitr4id 198 1 (∃𝑥 𝑥𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703  wex 1485  wcel 2141  wrex 2449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-cleq 2163  df-clel 2166  df-rex 2454
This theorem is referenced by:  ltexprlemloc  7569
  Copyright terms: Public domain W3C validator