ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.45mv GIF version

Theorem r19.45mv 3553
Description: Restricted version of Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.45mv (∃𝑥 𝑥𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.45mv
StepHypRef Expression
1 r19.43 2663 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
2 r19.9rmv 3551 . . 3 (∃𝑥 𝑥𝐴 → (𝜑 ↔ ∃𝑥𝐴 𝜑))
32orbi1d 792 . 2 (∃𝑥 𝑥𝐴 → ((𝜑 ∨ ∃𝑥𝐴 𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓)))
41, 3bitr4id 199 1 (∃𝑥 𝑥𝐴 → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∃𝑥𝐴 𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709  wex 1514  wcel 2175  wrex 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-clel 2200  df-rex 2489
This theorem is referenced by:  ltexprlemloc  7719
  Copyright terms: Public domain W3C validator