| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . 3
| |
| 2 | 1 | orbi2d 792 |
. 2
|
| 3 | orcom 730 |
. 2
| |
| 4 | orcom 730 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 794 orbi12d 795 xorbi1d 1401 eueq2dc 2953 uneq1 3328 r19.45mv 3562 rexprg 3695 rextpg 3697 swopolem 4370 sowlin 4385 onsucelsucexmidlem1 4594 onsucelsucexmid 4596 ordsoexmid 4628 isosolem 5916 acexmidlema 5958 acexmidlemb 5959 acexmidlem2 5964 acexmidlemv 5965 freceq1 6501 exmidaclem 7351 exmidac 7352 elinp 7622 prloc 7639 suplocexprlemloc 7869 ltsosr 7912 suplocsrlemb 7954 axpre-ltwlin 8031 axpre-suploclemres 8049 axpre-suploc 8050 apreap 8695 apreim 8711 sup3exmid 9065 nn01to3 9773 ltxr 9932 fzpr 10234 elfzp12 10256 lcmval 12500 lcmass 12522 isprm6 12584 lringuplu 14073 domneq0 14149 znidom 14534 dedekindeulemloc 15206 dedekindeulemeu 15209 suplociccreex 15211 dedekindicclemloc 15215 dedekindicclemeu 15218 perfectlem2 15587 |
| Copyright terms: Public domain | W3C validator |