| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . 3
| |
| 2 | 1 | orbi2d 791 |
. 2
|
| 3 | orcom 729 |
. 2
| |
| 4 | orcom 729 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 793 orbi12d 794 xorbi1d 1392 eueq2dc 2937 uneq1 3311 r19.45mv 3545 rexprg 3675 rextpg 3677 swopolem 4341 sowlin 4356 onsucelsucexmidlem1 4565 onsucelsucexmid 4567 ordsoexmid 4599 isosolem 5874 acexmidlema 5916 acexmidlemb 5917 acexmidlem2 5922 acexmidlemv 5923 freceq1 6459 exmidaclem 7291 exmidac 7292 elinp 7558 prloc 7575 suplocexprlemloc 7805 ltsosr 7848 suplocsrlemb 7890 axpre-ltwlin 7967 axpre-suploclemres 7985 axpre-suploc 7986 apreap 8631 apreim 8647 sup3exmid 9001 nn01to3 9708 ltxr 9867 fzpr 10169 elfzp12 10191 lcmval 12256 lcmass 12278 isprm6 12340 lringuplu 13828 domneq0 13904 znidom 14289 dedekindeulemloc 14939 dedekindeulemeu 14942 suplociccreex 14944 dedekindicclemloc 14948 dedekindicclemeu 14951 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |