Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 |
Ref | Expression |
---|---|
orbi1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 | . . 3 | |
2 | 1 | orbi2d 785 | . 2 |
3 | orcom 723 | . 2 | |
4 | orcom 723 | . 2 | |
5 | 2, 3, 4 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1 787 orbi12d 788 xorbi1d 1376 eueq2dc 2903 uneq1 3274 r19.45mv 3508 rexprg 3635 rextpg 3637 swopolem 4290 sowlin 4305 onsucelsucexmidlem1 4512 onsucelsucexmid 4514 ordsoexmid 4546 isosolem 5803 acexmidlema 5844 acexmidlemb 5845 acexmidlem2 5850 acexmidlemv 5851 freceq1 6371 exmidaclem 7185 exmidac 7186 elinp 7436 prloc 7453 suplocexprlemloc 7683 ltsosr 7726 suplocsrlemb 7768 axpre-ltwlin 7845 axpre-suploclemres 7863 axpre-suploc 7864 apreap 8506 apreim 8522 sup3exmid 8873 nn01to3 9576 ltxr 9732 fzpr 10033 elfzp12 10055 lcmval 12017 lcmass 12039 isprm6 12101 dedekindeulemloc 13391 dedekindeulemeu 13394 suplociccreex 13396 dedekindicclemloc 13400 dedekindicclemeu 13403 |
Copyright terms: Public domain | W3C validator |