| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . 3
| |
| 2 | 1 | orbi2d 792 |
. 2
|
| 3 | orcom 730 |
. 2
| |
| 4 | orcom 730 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 794 orbi12d 795 xorbi1d 1401 eueq2dc 2946 uneq1 3320 r19.45mv 3554 rexprg 3685 rextpg 3687 swopolem 4353 sowlin 4368 onsucelsucexmidlem1 4577 onsucelsucexmid 4579 ordsoexmid 4611 isosolem 5895 acexmidlema 5937 acexmidlemb 5938 acexmidlem2 5943 acexmidlemv 5944 freceq1 6480 exmidaclem 7322 exmidac 7323 elinp 7589 prloc 7606 suplocexprlemloc 7836 ltsosr 7879 suplocsrlemb 7921 axpre-ltwlin 7998 axpre-suploclemres 8016 axpre-suploc 8017 apreap 8662 apreim 8678 sup3exmid 9032 nn01to3 9740 ltxr 9899 fzpr 10201 elfzp12 10223 lcmval 12418 lcmass 12440 isprm6 12502 lringuplu 13991 domneq0 14067 znidom 14452 dedekindeulemloc 15124 dedekindeulemeu 15127 suplociccreex 15129 dedekindicclemloc 15133 dedekindicclemeu 15136 perfectlem2 15505 |
| Copyright terms: Public domain | W3C validator |