| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . 3
| |
| 2 | 1 | orbi2d 792 |
. 2
|
| 3 | orcom 730 |
. 2
| |
| 4 | orcom 730 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 794 orbi12d 795 xorbi1d 1401 eueq2dc 2946 uneq1 3320 r19.45mv 3554 rexprg 3685 rextpg 3687 swopolem 4352 sowlin 4367 onsucelsucexmidlem1 4576 onsucelsucexmid 4578 ordsoexmid 4610 isosolem 5893 acexmidlema 5935 acexmidlemb 5936 acexmidlem2 5941 acexmidlemv 5942 freceq1 6478 exmidaclem 7320 exmidac 7321 elinp 7587 prloc 7604 suplocexprlemloc 7834 ltsosr 7877 suplocsrlemb 7919 axpre-ltwlin 7996 axpre-suploclemres 8014 axpre-suploc 8015 apreap 8660 apreim 8676 sup3exmid 9030 nn01to3 9738 ltxr 9897 fzpr 10199 elfzp12 10221 lcmval 12385 lcmass 12407 isprm6 12469 lringuplu 13958 domneq0 14034 znidom 14419 dedekindeulemloc 15091 dedekindeulemeu 15094 suplociccreex 15096 dedekindicclemloc 15100 dedekindicclemeu 15103 perfectlem2 15472 |
| Copyright terms: Public domain | W3C validator |