| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version | ||
| Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| orbid.1 |
|
| Ref | Expression |
|---|---|
| orbi1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbid.1 |
. . 3
| |
| 2 | 1 | orbi2d 795 |
. 2
|
| 3 | orcom 733 |
. 2
| |
| 4 | orcom 733 |
. 2
| |
| 5 | 2, 3, 4 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1 797 orbi12d 798 xorbi1d 1423 eueq2dc 2976 uneq1 3351 r19.45mv 3585 rexprg 3718 rextpg 3720 swopolem 4396 sowlin 4411 onsucelsucexmidlem1 4620 onsucelsucexmid 4622 ordsoexmid 4654 isosolem 5948 acexmidlema 5992 acexmidlemb 5993 acexmidlem2 5998 acexmidlemv 5999 freceq1 6538 exmidaclem 7390 exmidac 7391 elinp 7661 prloc 7678 suplocexprlemloc 7908 ltsosr 7951 suplocsrlemb 7993 axpre-ltwlin 8070 axpre-suploclemres 8088 axpre-suploc 8089 apreap 8734 apreim 8750 sup3exmid 9104 nn01to3 9812 ltxr 9971 fzpr 10273 elfzp12 10295 lcmval 12585 lcmass 12607 isprm6 12669 lringuplu 14160 domneq0 14236 znidom 14621 dedekindeulemloc 15293 dedekindeulemeu 15296 suplociccreex 15298 dedekindicclemloc 15302 dedekindicclemeu 15305 perfectlem2 15674 |
| Copyright terms: Public domain | W3C validator |