![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi1d | Unicode version |
Description: Deduction adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
orbid.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbid.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | orbi2d 790 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | orcom 728 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | orcom 728 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3bitr4g 223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: orbi1 792 orbi12d 793 xorbi1d 1381 eueq2dc 2912 uneq1 3284 r19.45mv 3518 rexprg 3646 rextpg 3648 swopolem 4307 sowlin 4322 onsucelsucexmidlem1 4529 onsucelsucexmid 4531 ordsoexmid 4563 isosolem 5827 acexmidlema 5868 acexmidlemb 5869 acexmidlem2 5874 acexmidlemv 5875 freceq1 6395 exmidaclem 7209 exmidac 7210 elinp 7475 prloc 7492 suplocexprlemloc 7722 ltsosr 7765 suplocsrlemb 7807 axpre-ltwlin 7884 axpre-suploclemres 7902 axpre-suploc 7903 apreap 8546 apreim 8562 sup3exmid 8916 nn01to3 9619 ltxr 9777 fzpr 10079 elfzp12 10101 lcmval 12065 lcmass 12087 isprm6 12149 lringuplu 13342 dedekindeulemloc 14182 dedekindeulemeu 14185 suplociccreex 14187 dedekindicclemloc 14191 dedekindicclemeu 14194 |
Copyright terms: Public domain | W3C validator |