ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemloc Unicode version

Theorem ltexprlemloc 7439
Description: Our constructed difference is located. Lemma for ltexpri 7445. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemloc  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemloc
Dummy variables  z  w  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7241 . . . . . 6  |-  ( q 
<Q  r  ->  E. w  e.  Q.  ( q  +Q  w )  =  r )
21adantl 275 . . . . 5  |-  ( ( A  <P  B  /\  q  <Q  r )  ->  E. w  e.  Q.  ( q  +Q  w
)  =  r )
3 ltrelpr 7337 . . . . . . . . . 10  |-  <P  C_  ( P.  X.  P. )
43brel 4599 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
54simpld 111 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
6 prop 7307 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prarloc 7335 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
86, 7sylan 281 . . . . . . . 8  |-  ( ( A  e.  P.  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
95, 8sylan 281 . . . . . . 7  |-  ( ( A  <P  B  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
109ad2ant2r 501 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w ) )
114simprd 113 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
1211ad2antrr 480 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  B  e.  P. )
1312ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  B  e.  P. )
14 ltanqg 7232 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
1514adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
16 elprnqu 7314 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
176, 16sylan 281 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
185, 17sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
1918adantlr 469 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2019ad2ant2rl 503 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  y  e.  Q. )
21 elprnql 7313 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
226, 21sylan 281 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
235, 22sylan 281 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2423adantlr 469 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2524ad2ant2r 501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
26 simplrl 525 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  w  e.  Q. )
27 addclnq 7207 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  +Q  w
)  e.  Q. )
2825, 26, 27syl2anc 409 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  w )  e.  Q. )
29 ltrelnq 7197 . . . . . . . . . . . . . . . . . . 19  |-  <Q  C_  ( Q.  X.  Q. )
3029brel 4599 . . . . . . . . . . . . . . . . . 18  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
3130simpld 111 . . . . . . . . . . . . . . . . 17  |-  ( q 
<Q  r  ->  q  e. 
Q. )
3231adantl 275 . . . . . . . . . . . . . . . 16  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
q  e.  Q. )
3332ad2antrr 480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  q  e.  Q. )
34 addcomnqg 7213 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3534adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3615, 20, 28, 33, 35caovord2d 5948 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  <->  ( y  +Q  q )  <Q  (
( z  +Q  w
)  +Q  q ) ) )
37 addassnqg 7214 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  q  e.  Q. )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  ( w  +Q  q
) ) )
3825, 26, 33, 37syl3anc 1217 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  ( w  +Q  q
) ) )
39 addcomnqg 7213 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Q.  /\  q  e.  Q. )  ->  ( w  +Q  q
)  =  ( q  +Q  w ) )
4026, 33, 39syl2anc 409 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
w  +Q  q )  =  ( q  +Q  w ) )
4140oveq2d 5798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  ( w  +Q  q ) )  =  ( z  +Q  ( q  +Q  w
) ) )
42 simplrr 526 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
q  +Q  w )  =  r )
4342oveq2d 5798 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  ( q  +Q  w ) )  =  ( z  +Q  r ) )
4438, 41, 433eqtrd 2177 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  r ) )
4544breq2d 3949 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( y  +Q  q
)  <Q  ( ( z  +Q  w )  +Q  q )  <->  ( y  +Q  q )  <Q  (
z  +Q  r ) ) )
4636, 45bitrd 187 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  <->  ( y  +Q  q )  <Q  (
z  +Q  r ) ) )
4746biimpa 294 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  r
) )
48 prop 7307 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
49 prloc 7323 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  <Q  ( z  +Q  r ) )  -> 
( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
5048, 49sylan 281 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  <Q  ( z  +Q  r ) )  -> 
( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
5113, 47, 50syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) )
5251ex 114 . . . . . . . . . 10  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) ) )
5352anassrs 398 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  z  e.  ( 1st `  A
) )  /\  y  e.  ( 2nd `  A
) )  ->  (
y  <Q  ( z  +Q  w )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) ) )
5453reximdva 2537 . . . . . . . 8  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  z  e.  ( 1st `  A ) )  -> 
( E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
5554reximdva 2537 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
56 prml 7309 . . . . . . . . . . . 12  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 1st `  A ) )
57 rexex 2482 . . . . . . . . . . . 12  |-  ( E. z  e.  Q.  z  e.  ( 1st `  A
)  ->  E. z 
z  e.  ( 1st `  A ) )
586, 56, 573syl 17 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  E. z 
z  e.  ( 1st `  A ) )
59 r19.45mv 3461 . . . . . . . . . . 11  |-  ( E. z  z  e.  ( 1st `  A )  ->  ( E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
605, 58, 593syl 17 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( E. z  e.  ( 1st `  A ) ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
6160adantr 274 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
62 prmu 7310 . . . . . . . . . . . . 13  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
63 rexex 2482 . . . . . . . . . . . . 13  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. x  x  e.  ( 2nd `  A ) )
646, 62, 633syl 17 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  E. x  x  e.  ( 2nd `  A ) )
65 r19.43 2592 . . . . . . . . . . . . 13  |-  ( E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. y  e.  ( 2nd `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) )
66 r19.9rmv 3459 . . . . . . . . . . . . . 14  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( ( z  +Q  r )  e.  ( 2nd `  B
)  <->  E. y  e.  ( 2nd `  A ) ( z  +Q  r
)  e.  ( 2nd `  B ) ) )
6766orbi2d 780 . . . . . . . . . . . . 13  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. y  e.  ( 2nd `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
6865, 67bitr4id 198 . . . . . . . . . . . 12  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
695, 64, 683syl 17 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
7069rexbidv 2439 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
7170adantr 274 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
72 ltexprlem.1 . . . . . . . . . . . . . 14  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
7372ltexprlemell 7430 . . . . . . . . . . . . 13  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
7472ltexprlemelu 7431 . . . . . . . . . . . . . 14  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
75 eleq1 2203 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
y  e.  ( 1st `  A )  <->  z  e.  ( 1st `  A ) ) )
76 oveq1 5789 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
y  +Q  r )  =  ( z  +Q  r ) )
7776eleq1d 2209 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( y  +Q  r
)  e.  ( 2nd `  B )  <->  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
7875, 77anbi12d 465 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) )  <->  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
7978cbvexv 1891 . . . . . . . . . . . . . . 15  |-  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) )  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
8079anbi2i 453 . . . . . . . . . . . . . 14  |-  ( ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8174, 80bitri 183 . . . . . . . . . . . . 13  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8273, 81orbi12i 754 . . . . . . . . . . . 12  |-  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
83 ibar 299 . . . . . . . . . . . . . . 15  |-  ( q  e.  Q.  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
8483adantr 274 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
85 ibar 299 . . . . . . . . . . . . . . 15  |-  ( r  e.  Q.  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( r  e. 
Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8685adantl 275 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( E. z ( z  e.  ( 1st `  A )  /\  (
z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( r  e.  Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8784, 86orbi12d 783 . . . . . . . . . . . . 13  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) ) )
8830, 87syl 14 . . . . . . . . . . . 12  |-  ( q 
<Q  r  ->  ( ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) ) )
8982, 88bitr4id 198 . . . . . . . . . . 11  |-  ( q 
<Q  r  ->  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
90 df-rex 2423 . . . . . . . . . . . 12  |-  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  <->  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
91 df-rex 2423 . . . . . . . . . . . 12  |-  ( E. z  e.  ( 1st `  A ) ( z  +Q  r )  e.  ( 2nd `  B
)  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
9290, 91orbi12i 754 . . . . . . . . . . 11  |-  ( ( E. y  e.  ( 2nd `  A ) ( y  +Q  q
)  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A ) ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9389, 92syl6bbr 197 . . . . . . . . . 10  |-  ( q 
<Q  r  ->  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9493adantl 275 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9561, 71, 943bitr4rd 220 . . . . . . . 8  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) )  <->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
9695adantr 274 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( (
q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
9755, 96sylibrd 168 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
9810, 97mpd 13 . . . . 5  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) )
992, 98rexlimddv 2557 . . . 4  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C ) ) )
10099ex 114 . . 3  |-  ( A 
<P  B  ->  ( q 
<Q  r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
101100ralrimivw 2509 . 2  |-  ( A 
<P  B  ->  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
102101ralrimivw 2509 1  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421   <.cop 3535   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    +Q cplq 7114    <Q cltq 7117   P.cnp 7123    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iltp 7302
This theorem is referenced by:  ltexprlempr  7440
  Copyright terms: Public domain W3C validator