ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemloc Unicode version

Theorem ltexprlemloc 7674
Description: Our constructed difference is located. Lemma for ltexpri 7680. (Contributed by Jim Kingdon, 17-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemloc  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemloc
Dummy variables  z  w  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 7476 . . . . . 6  |-  ( q 
<Q  r  ->  E. w  e.  Q.  ( q  +Q  w )  =  r )
21adantl 277 . . . . 5  |-  ( ( A  <P  B  /\  q  <Q  r )  ->  E. w  e.  Q.  ( q  +Q  w
)  =  r )
3 ltrelpr 7572 . . . . . . . . . 10  |-  <P  C_  ( P.  X.  P. )
43brel 4715 . . . . . . . . 9  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
54simpld 112 . . . . . . . 8  |-  ( A 
<P  B  ->  A  e. 
P. )
6 prop 7542 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
7 prarloc 7570 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
86, 7sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
95, 8sylan 283 . . . . . . 7  |-  ( ( A  <P  B  /\  w  e.  Q. )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) y  <Q  ( z  +Q  w ) )
109ad2ant2r 509 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w ) )
114simprd 114 . . . . . . . . . . . . . 14  |-  ( A 
<P  B  ->  B  e. 
P. )
1211ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  B  e.  P. )
1312ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  B  e.  P. )
14 ltanqg 7467 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
1514adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
16 elprnqu 7549 . . . . . . . . . . . . . . . . . . 19  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
176, 16sylan 283 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
185, 17sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( A  <P  B  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
1918adantlr 477 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2019ad2ant2rl 511 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  y  e.  Q. )
21 elprnql 7548 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
226, 21sylan 283 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
235, 22sylan 283 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  <P  B  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2423adantlr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  z  e.  ( 1st `  A ) )  -> 
z  e.  Q. )
2524ad2ant2r 509 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  z  e.  Q. )
26 simplrl 535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  w  e.  Q. )
27 addclnq 7442 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  Q.  /\  w  e.  Q. )  ->  ( z  +Q  w
)  e.  Q. )
2825, 26, 27syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  w )  e.  Q. )
29 ltrelnq 7432 . . . . . . . . . . . . . . . . . . 19  |-  <Q  C_  ( Q.  X.  Q. )
3029brel 4715 . . . . . . . . . . . . . . . . . 18  |-  ( q 
<Q  r  ->  ( q  e.  Q.  /\  r  e.  Q. ) )
3130simpld 112 . . . . . . . . . . . . . . . . 17  |-  ( q 
<Q  r  ->  q  e. 
Q. )
3231adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
q  e.  Q. )
3332ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  q  e.  Q. )
34 addcomnqg 7448 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
3534adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
3615, 20, 28, 33, 35caovord2d 6093 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  <->  ( y  +Q  q )  <Q  (
( z  +Q  w
)  +Q  q ) ) )
37 addassnqg 7449 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  Q.  /\  w  e.  Q.  /\  q  e.  Q. )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  ( w  +Q  q
) ) )
3825, 26, 33, 37syl3anc 1249 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  ( w  +Q  q
) ) )
39 addcomnqg 7448 . . . . . . . . . . . . . . . . . 18  |-  ( ( w  e.  Q.  /\  q  e.  Q. )  ->  ( w  +Q  q
)  =  ( q  +Q  w ) )
4026, 33, 39syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
w  +Q  q )  =  ( q  +Q  w ) )
4140oveq2d 5938 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  ( w  +Q  q ) )  =  ( z  +Q  ( q  +Q  w
) ) )
42 simplrr 536 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
q  +Q  w )  =  r )
4342oveq2d 5938 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
z  +Q  ( q  +Q  w ) )  =  ( z  +Q  r ) )
4438, 41, 433eqtrd 2233 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( z  +Q  w
)  +Q  q )  =  ( z  +Q  r ) )
4544breq2d 4045 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
( y  +Q  q
)  <Q  ( ( z  +Q  w )  +Q  q )  <->  ( y  +Q  q )  <Q  (
z  +Q  r ) ) )
4636, 45bitrd 188 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  <->  ( y  +Q  q )  <Q  (
z  +Q  r ) ) )
4746biimpa 296 . . . . . . . . . . . 12  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  (
y  +Q  q ) 
<Q  ( z  +Q  r
) )
48 prop 7542 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
49 prloc 7558 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  <Q  ( z  +Q  r ) )  -> 
( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
5048, 49sylan 283 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  <Q  ( z  +Q  r ) )  -> 
( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
5113, 47, 50syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  ( z  e.  ( 1st `  A
)  /\  y  e.  ( 2nd `  A ) ) )  /\  y  <Q  ( z  +Q  w
) )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) )
5251ex 115 . . . . . . . . . 10  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  ( z  e.  ( 1st `  A )  /\  y  e.  ( 2nd `  A ) ) )  ->  (
y  <Q  ( z  +Q  w )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) ) )
5352anassrs 400 . . . . . . . . 9  |-  ( ( ( ( ( A 
<P  B  /\  q  <Q  r )  /\  (
w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  /\  z  e.  ( 1st `  A
) )  /\  y  e.  ( 2nd `  A
) )  ->  (
y  <Q  ( z  +Q  w )  ->  (
( y  +Q  q
)  e.  ( 1st `  B )  \/  (
z  +Q  r )  e.  ( 2nd `  B
) ) ) )
5453reximdva 2599 . . . . . . . 8  |-  ( ( ( ( A  <P  B  /\  q  <Q  r
)  /\  ( w  e.  Q.  /\  ( q  +Q  w )  =  r ) )  /\  z  e.  ( 1st `  A ) )  -> 
( E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
5554reximdva 2599 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
56 prml 7544 . . . . . . . . . . . 12  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. z  e.  Q.  z  e.  ( 1st `  A ) )
57 rexex 2543 . . . . . . . . . . . 12  |-  ( E. z  e.  Q.  z  e.  ( 1st `  A
)  ->  E. z 
z  e.  ( 1st `  A ) )
586, 56, 573syl 17 . . . . . . . . . . 11  |-  ( A  e.  P.  ->  E. z 
z  e.  ( 1st `  A ) )
59 r19.45mv 3544 . . . . . . . . . . 11  |-  ( E. z  z  e.  ( 1st `  A )  ->  ( E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
605, 58, 593syl 17 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( E. z  e.  ( 1st `  A ) ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
6160adantr 276 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
62 prmu 7545 . . . . . . . . . . . . 13  |-  ( <.
( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  ->  E. x  e.  Q.  x  e.  ( 2nd `  A ) )
63 rexex 2543 . . . . . . . . . . . . 13  |-  ( E. x  e.  Q.  x  e.  ( 2nd `  A
)  ->  E. x  x  e.  ( 2nd `  A ) )
646, 62, 633syl 17 . . . . . . . . . . . 12  |-  ( A  e.  P.  ->  E. x  x  e.  ( 2nd `  A ) )
65 r19.43 2655 . . . . . . . . . . . . 13  |-  ( E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. y  e.  ( 2nd `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) )
66 r19.9rmv 3542 . . . . . . . . . . . . . 14  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( ( z  +Q  r )  e.  ( 2nd `  B
)  <->  E. y  e.  ( 2nd `  A ) ( z  +Q  r
)  e.  ( 2nd `  B ) ) )
6766orbi2d 791 . . . . . . . . . . . . 13  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. y  e.  ( 2nd `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
6865, 67bitr4id 199 . . . . . . . . . . . 12  |-  ( E. x  x  e.  ( 2nd `  A )  ->  ( E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
695, 64, 683syl 17 . . . . . . . . . . 11  |-  ( A 
<P  B  ->  ( E. y  e.  ( 2nd `  A ) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
7069rexbidv 2498 . . . . . . . . . 10  |-  ( A 
<P  B  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
7170adantr 276 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  E. z  e.  ( 1st `  A
) ( E. y  e.  ( 2nd `  A
) ( y  +Q  q )  e.  ( 1st `  B )  \/  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
72 ltexprlem.1 . . . . . . . . . . . . . 14  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
7372ltexprlemell 7665 . . . . . . . . . . . . 13  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
7472ltexprlemelu 7666 . . . . . . . . . . . . . 14  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) ) )
75 eleq1 2259 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
y  e.  ( 1st `  A )  <->  z  e.  ( 1st `  A ) ) )
76 oveq1 5929 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
y  +Q  r )  =  ( z  +Q  r ) )
7776eleq1d 2265 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
( y  +Q  r
)  e.  ( 2nd `  B )  <->  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
7875, 77anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( y  e.  ( 1st `  A )  /\  ( y  +Q  r )  e.  ( 2nd `  B ) )  <->  ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
7978cbvexv 1933 . . . . . . . . . . . . . . 15  |-  ( E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) )  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
8079anbi2i 457 . . . . . . . . . . . . . 14  |-  ( ( r  e.  Q.  /\  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( r  e.  Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8174, 80bitri 184 . . . . . . . . . . . . 13  |-  ( r  e.  ( 2nd `  C
)  <->  ( r  e. 
Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
8273, 81orbi12i 765 . . . . . . . . . . . 12  |-  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
83 ibar 301 . . . . . . . . . . . . . . 15  |-  ( q  e.  Q.  ->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
8483adantr 276 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( E. y ( y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
85 ibar 301 . . . . . . . . . . . . . . 15  |-  ( r  e.  Q.  ->  ( E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) )  <->  ( r  e. 
Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8685adantl 277 . . . . . . . . . . . . . 14  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( E. z ( z  e.  ( 1st `  A )  /\  (
z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( r  e.  Q.  /\  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
8784, 86orbi12d 794 . . . . . . . . . . . . 13  |-  ( ( q  e.  Q.  /\  r  e.  Q. )  ->  ( ( E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) ) )
8830, 87syl 14 . . . . . . . . . . . 12  |-  ( q 
<Q  r  ->  ( ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )  <->  ( (
q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  \/  (
r  e.  Q.  /\  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) ) )
8982, 88bitr4id 199 . . . . . . . . . . 11  |-  ( q 
<Q  r  ->  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) ) )
90 df-rex 2481 . . . . . . . . . . . 12  |-  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  <->  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
91 df-rex 2481 . . . . . . . . . . . 12  |-  ( E. z  e.  ( 1st `  A ) ( z  +Q  r )  e.  ( 2nd `  B
)  <->  E. z ( z  e.  ( 1st `  A
)  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) )
9290, 91orbi12i 765 . . . . . . . . . . 11  |-  ( ( E. y  e.  ( 2nd `  A ) ( y  +Q  q
)  e.  ( 1st `  B )  \/  E. z  e.  ( 1st `  A ) ( z  +Q  r )  e.  ( 2nd `  B
) )  <->  ( E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) )  \/  E. z
( z  e.  ( 1st `  A )  /\  ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9389, 92bitr4di 198 . . . . . . . . . 10  |-  ( q 
<Q  r  ->  ( ( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9493adantl 277 . . . . . . . . 9  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) )  <->  ( E. y  e.  ( 2nd `  A ) ( y  +Q  q )  e.  ( 1st `  B
)  \/  E. z  e.  ( 1st `  A
) ( z  +Q  r )  e.  ( 2nd `  B ) ) ) )
9561, 71, 943bitr4rd 221 . . . . . . . 8  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) )  <->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
9695adantr 276 . . . . . . 7  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( (
q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C
) )  <->  E. z  e.  ( 1st `  A
) E. y  e.  ( 2nd `  A
) ( ( y  +Q  q )  e.  ( 1st `  B
)  \/  ( z  +Q  r )  e.  ( 2nd `  B
) ) ) )
9755, 96sylibrd 169 . . . . . 6  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( E. z  e.  ( 1st `  A ) E. y  e.  ( 2nd `  A
) y  <Q  (
z  +Q  w )  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
9810, 97mpd 13 . . . . 5  |-  ( ( ( A  <P  B  /\  q  <Q  r )  /\  ( w  e.  Q.  /\  ( q  +Q  w
)  =  r ) )  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) )
992, 98rexlimddv 2619 . . . 4  |-  ( ( A  <P  B  /\  q  <Q  r )  -> 
( q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C ) ) )
10099ex 115 . . 3  |-  ( A 
<P  B  ->  ( q 
<Q  r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
101100ralrimivw 2571 . 2  |-  ( A 
<P  B  ->  A. r  e.  Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
102101ralrimivw 2571 1  |-  ( A 
<P  B  ->  A. q  e.  Q.  A. r  e. 
Q.  ( q  <Q 
r  ->  ( q  e.  ( 1st `  C
)  \/  r  e.  ( 2nd `  C
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   <.cop 3625   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    +Q cplq 7349    <Q cltq 7352   P.cnp 7358    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-iltp 7537
This theorem is referenced by:  ltexprlempr  7675
  Copyright terms: Public domain W3C validator