![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabbii | GIF version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2738. (Contributed by Peter Mazsa, 1-Nov-2019.) |
Ref | Expression |
---|---|
rabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rabbii | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rabbiia 2734 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1363 ∈ wcel 2158 {crab 2469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-11 1516 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-rab 2474 |
This theorem is referenced by: dfdif3 3257 suplocexpr 7737 dmtopon 13750 |
Copyright terms: Public domain | W3C validator |