Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbii | GIF version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Inference form of rabbidv 2719. (Contributed by Peter Mazsa, 1-Nov-2019.) |
Ref | Expression |
---|---|
rabbii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
rabbii | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
3 | 2 | rabbiia 2715 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐴 ∣ 𝜓} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1348 ∈ wcel 2141 {crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-rab 2457 |
This theorem is referenced by: dfdif3 3237 suplocexpr 7687 dmtopon 12815 |
Copyright terms: Public domain | W3C validator |