Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbiia | Unicode version |
Description: Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 |
Ref | Expression |
---|---|
rabbiia |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 | |
2 | 1 | pm5.32i 450 | . . 3 |
3 | 2 | abbii 2282 | . 2 |
4 | df-rab 2453 | . 2 | |
5 | df-rab 2453 | . 2 | |
6 | 3, 4, 5 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-rab 2453 |
This theorem is referenced by: rabbii 2712 bm2.5ii 4473 fndmdifcom 5591 cauappcvgprlemladdru 7597 cauappcvgprlemladdrl 7598 cauappcvgpr 7603 caucvgprlemcl 7617 caucvgprlemladdrl 7619 caucvgpr 7623 caucvgprprlemclphr 7646 ioopos 9886 gcdcom 11906 gcdass 11948 lcmcom 11996 lcmass 12017 |
Copyright terms: Public domain | W3C validator |