ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabbiia Unicode version

Theorem rabbiia 2748
Description: Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.)
Hypothesis
Ref Expression
rabbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rabbiia  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }

Proof of Theorem rabbiia
StepHypRef Expression
1 rabbiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 454 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32abbii 2312 . 2  |-  { x  |  ( x  e.  A  /\  ph ) }  =  { x  |  ( x  e.  A  /\  ps ) }
4 df-rab 2484 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
5 df-rab 2484 . 2  |-  { x  e.  A  |  ps }  =  { x  |  ( x  e.  A  /\  ps ) }
63, 4, 53eqtr4i 2227 1  |-  { x  e.  A  |  ph }  =  { x  e.  A  |  ps }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-rab 2484
This theorem is referenced by:  rabbii  2749  bm2.5ii  4533  fndmdifcom  5671  cauappcvgprlemladdru  7740  cauappcvgprlemladdrl  7741  cauappcvgpr  7746  caucvgprlemcl  7760  caucvgprlemladdrl  7762  caucvgpr  7766  caucvgprprlemclphr  7789  ioopos  10042  gcdcom  12165  gcdass  12207  lcmcom  12257  lcmass  12278
  Copyright terms: Public domain W3C validator