Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbiia | Unicode version |
Description: Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 |
Ref | Expression |
---|---|
rabbiia |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 | |
2 | 1 | pm5.32i 451 | . . 3 |
3 | 2 | abbii 2286 | . 2 |
4 | df-rab 2457 | . 2 | |
5 | df-rab 2457 | . 2 | |
6 | 3, 4, 5 | 3eqtr4i 2201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-rab 2457 |
This theorem is referenced by: rabbii 2716 bm2.5ii 4480 fndmdifcom 5602 cauappcvgprlemladdru 7618 cauappcvgprlemladdrl 7619 cauappcvgpr 7624 caucvgprlemcl 7638 caucvgprlemladdrl 7640 caucvgpr 7644 caucvgprprlemclphr 7667 ioopos 9907 gcdcom 11928 gcdass 11970 lcmcom 12018 lcmass 12039 |
Copyright terms: Public domain | W3C validator |