Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabbiia | Unicode version |
Description: Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
Ref | Expression |
---|---|
rabbiia.1 |
Ref | Expression |
---|---|
rabbiia |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbiia.1 | . . . 4 | |
2 | 1 | pm5.32i 450 | . . 3 |
3 | 2 | abbii 2270 | . 2 |
4 | df-rab 2441 | . 2 | |
5 | df-rab 2441 | . 2 | |
6 | 3, 4, 5 | 3eqtr4i 2185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wcel 2125 cab 2140 crab 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-rab 2441 |
This theorem is referenced by: rabbii 2695 bm2.5ii 4449 fndmdifcom 5566 cauappcvgprlemladdru 7555 cauappcvgprlemladdrl 7556 cauappcvgpr 7561 caucvgprlemcl 7575 caucvgprlemladdrl 7577 caucvgpr 7581 caucvgprprlemclphr 7604 ioopos 9832 gcdcom 11829 gcdass 11870 lcmcom 11912 lcmass 11933 |
Copyright terms: Public domain | W3C validator |