| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabbiia | Unicode version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (inference form). (Contributed by NM, 22-May-1999.) |
| Ref | Expression |
|---|---|
| rabbiia.1 |
|
| Ref | Expression |
|---|---|
| rabbiia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbiia.1 |
. . . 4
| |
| 2 | 1 | pm5.32i 454 |
. . 3
|
| 3 | 2 | abbii 2321 |
. 2
|
| 4 | df-rab 2493 |
. 2
| |
| 5 | df-rab 2493 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4i 2236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-rab 2493 |
| This theorem is referenced by: rabbii 2758 bm2.5ii 4544 fndmdifcom 5686 cauappcvgprlemladdru 7769 cauappcvgprlemladdrl 7770 cauappcvgpr 7775 caucvgprlemcl 7789 caucvgprlemladdrl 7791 caucvgpr 7795 caucvgprprlemclphr 7818 ioopos 10072 gcdcom 12294 gcdass 12336 lcmcom 12386 lcmass 12407 |
| Copyright terms: Public domain | W3C validator |